how to convert this code exposal to linear and how to find mape

8 visualizaciones (últimos 30 días)
andrew moisidi
andrew moisidi el 29 de Mayo de 2021
Editada: Walter Roberson el 11 de Mzo. de 2025
function [a,g0] = getExpontialModel(f)
A = zeros(1,length(f)-1);
G_0 = zeros(1,length(f)-1);
for i=2:length(f)
if f(i-1) ~= 0
A(i-1) = f(i)/f(i-1);
else
A(i-1) = 1;
end
end
a = median(A); %more robust than mean function
for i=1:length(f)-1
G_0(i) = f(i)/a^i;
end
g0 = median(G_0);%more robust than mean function

Respuestas (1)

Rahul
Rahul el 11 de Mzo. de 2025
In order to convert the exponential model to a linear model, consider using the logarithmic transformation. For this 'log' function can directly be used.
In order to fins the MAPE (Mean Absolute Percentage Error), a direct function is not availble in MATLAB in R2017b, however, it can be calculated using its formula. Here is an example:
g0 = median(G_0);
% Linearize the data
log_f = log(f);
% Calculate predicted values using the exponential model
predicted_f = g0 * a.^(0:length(f)-1);
% Calculate MAPE
mape = 100 * mean(abs((f - predicted_f) ./ f));
From MATLAB R2022b a direct 'mape' function was introduced:
mape_1 = mape(predicted_f,f);
The following MATLAb Answers can be referred:
The following MathWorks documentations can be referred to know more:

Categorías

Más información sobre Communications Toolbox en Help Center y File Exchange.

Productos


Versión

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by