a problem with pade approximation

4 visualizaciones (últimos 30 días)
arash rad
arash rad el 3 de Jun. de 2021
Editada: arash rad el 3 de Jun. de 2021
Hi
I have te code below
And i want to approxiamte delay with pade of first order :
clc
clear all
close all
s = tf('s');
G = [(-21.6*exp(-1*s))/(8.5*s+1) (1.26*exp(-0.3*s))/(7.05*s+1);...
(-2.75*exp(-1.8*s))/(8.2*s+1) (-4.28*exp(-0.35*s))/(9.0*s+1)]
G_new = pade (G,1)
but the answers is like this :
My tf was first order and with first order pade it should be second order
why some of it is third order ?
Thanks

Respuesta aceptada

Paul
Paul el 3 de Jun. de 2021
tf objects have three delay properties: InputDelay, OutputDelay, and IODelay. Look at all three of these properties for each element of G:
s = tf('s');
G = [(-21.6*exp(-1*s))/(8.5*s+1) (1.26*exp(-0.3*s))/(7.05*s+1);...
(-2.75*exp(-1.8*s))/(8.2*s+1) (-4.28*exp(-0.35*s))/(9.0*s+1)]
G = From input 1 to output... -21.6 1: exp(-1*s) * --------- 8.5 s + 1 -2.75 2: exp(-1.8*s) * --------- 8.2 s + 1 From input 2 to output... 1.26 1: exp(-0.3*s) * ---------- 7.05 s + 1 -4.28 2: exp(-0.35*s) * ------- 9 s + 1 Continuous-time transfer function.
[G(1,1).InputDelay G(1,1).OutputDelay G(1,1).IODelay G(1,2).InputDelay G(1,2).OutputDelay G(1,2).IODelay; G(2,1).InputDelay G(2,1).OutputDelay G(2,1).IODelay G(2,2).InputDelay G(2,2).OutputDelay G(2,2).IODelay]
ans = 2×6
0 0.3000 0.7000 0 0.3000 0 0 0.3500 1.4500 0 0.3500 0
As shown, the exp(-Ts) terms in G11 and G21 were divided into two different types of delays. It looks like the software is trying capture a common delay at the two outputs, and then makes up for the additional delay as needed with the IODelay. Then pade() comes along and substitutes a first order approximant for both of those delays in G11 and G21, resulting in third order models for Gnew11 and Gnew21
Gnew = pade(G,1)
Gnew = From input 1 to output... -21.6 s^2 + 205.7 s - 411.4 1: ------------------------------------- 8.5 s^3 + 81.95 s^2 + 171.4 s + 19.05 -2.75 s^2 + 19.51 s - 21.67 2: ------------------------------------- 8.2 s^3 + 59.17 s^2 + 71.72 s + 7.882 From input 2 to output... -1.26 s + 8.4 1: ----------------------- 7.05 s^2 + 48 s + 6.667 4.28 s - 24.46 2: ----------------------- 9 s^2 + 52.43 s + 5.714 Continuous-time transfer function.
Verify that Gnew11 is based on two first order approximants:
[num1,den1]=pade(.7,1);[num2,den2]=pade(.3,1);
Gnew(1,1), tf(-21.6,[8.5 1])*tf(num1,den1)*tf(num2,den2)
ans = -21.6 s^2 + 205.7 s - 411.4 ------------------------------------- 8.5 s^3 + 81.95 s^2 + 171.4 s + 19.05 Continuous-time transfer function. ans = -21.6 s^2 + 205.7 s - 411.4 ------------------------------------- 8.5 s^3 + 81.95 s^2 + 171.4 s + 19.05 Continuous-time transfer function.
Explicitly using IODelay on the individual elements looks like it yields what you might have expected.
G2 = [-21.6/(8.5*s+1) (1.26)/(7.05*s+1);...
(-2.75)/(8.2*s+1) (-4.28)/(9.0*s+1)];
G2(1,1).IODelay = 1; G2(1,2).IODelay = 0.3; G2(2,1).IODelay = 1.8; G2(2,2).IODelay = 0.35;
G2
G2 = From input 1 to output... -21.6 1: exp(-1*s) * --------- 8.5 s + 1 -2.75 2: exp(-1.8*s) * --------- 8.2 s + 1 From input 2 to output... 1.26 1: exp(-0.3*s) * ---------- 7.05 s + 1 -4.28 2: exp(-0.35*s) * ------- 9 s + 1 Continuous-time transfer function.
pade(G2,1)
ans = From input 1 to output... 21.6 s - 43.2 1: ------------------ 8.5 s^2 + 18 s + 2 2.75 s - 3.056 2: ------------------------- 8.2 s^2 + 10.11 s + 1.111 From input 2 to output... -1.26 s + 8.4 1: ----------------------- 7.05 s^2 + 48 s + 6.667 4.28 s - 24.46 2: ----------------------- 9 s^2 + 52.43 s + 5.714 Continuous-time transfer function.
Make sure that G and G2 have the same IO characteristics:
bode(G,G2)
  1 comentario
arash rad
arash rad el 3 de Jun. de 2021
Editada: arash rad el 3 de Jun. de 2021
Thank you very much
your explanation is complete

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Just for fun en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by