Borrar filtros
Borrar filtros

How to Realize 'Gradient Reversal Layer' ?

8 visualizaciones (últimos 30 días)
Percy Hu
Percy Hu el 16 de Jun. de 2021
Comentada: Percy Hu el 25 de Jun. de 2021
How can i complete a 'Gradient Reversal Layer' in matlab like in pytorch or tensorflow?
It is normally used in transfer learning network when a GAN-like loss is adopted.
Could i realize it by define a custom layer?
It is very grateful if you can offer an example of some detailed advice. Thank you for your help.
  2 comentarios
Percy Hu
Percy Hu el 16 de Jun. de 2021
Editada: Percy Hu el 16 de Jun. de 2021
Percy Hu
Percy Hu el 16 de Jun. de 2021
Editada: Percy Hu el 16 de Jun. de 2021
The gradient reversal layer has no parameters associated with it. During the forward propagation, the GRL acts as an identity transformation. During the backpropagation however, the GRL takes the gradient from the subsequent level and changes its sign, i.e., multiplies it by -1, before passing it to the preceding layer. Implementing such a layer using existing object-oriented packages for deep learning is simple, requiring only to dene procedures for the forward propagation (identity transformation), and backpropagation (multiplying by -1). The layer requires no parameter update.

Iniciar sesión para comentar.

Respuesta aceptada

Philip Brown
Philip Brown el 21 de Jun. de 2021
It looks like you should be able to do this by writing your own custom layer. See the "Intermediate Layer Template" for some code to get started.
There's a custom layer used in a visualization example which does something a little bit similar (to modify the behavior of a ReLU gradient), here.
I think the custom layer code you need looks something like this:
classdef GradientReversalLayer < nnet.layer.Layer
methods
function Z = predict(layer, X)
Z = X; % Identity
end
function dLdX = backward(layer, X, dLdZ)
dLdX = -dLdZ; % Reverse gradient
end
end
end
If you want to define the constant you multiple the gradient by, you could make it a property of the custom layer and include that in your backward function.
  1 comentario
Percy Hu
Percy Hu el 25 de Jun. de 2021
thank you very much for your help. It is really kind of you for your detailed explanation. and i hope your answer will help more people.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by