Sketch the graph using matlab
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ta Duc
el 5 de Jul. de 2021
Comentada: Ta Duc
el 5 de Jul. de 2021
Draw the graph of f and its tangent plane at the given point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. f(x, y)=[xy sin(x-y)]/[1+x^2+y^2], and the given point(1, 1, 0)
2 comentarios
Respuesta aceptada
Scott MacKenzie
el 5 de Jul. de 2021
Editada: Scott MacKenzie
el 5 de Jul. de 2021
I think this is what you are looking for. NOTE: My script is based on code in Find Tangent Plane to Surface which you should review for further details.
% function domain
x = -3:0.25:3;
y = -3:0.25:3;
% your function
f = @(x,y) (x .* y .* sin(x-y)) ./ (1 + x.^2 + y.^2);
% use gradient to find partial derivatives of f.
[xx, yy] = meshgrid(x,y);
[fx, fy] = gradient(f(xx,yy), 0.25);
% find tangent plane at query point of interest
xq = 1;
yq = 1;
t = (xx == xq) & (yy == yq);
indt = find(t);
fxq = fx(indt);
fyq = fy(indt);
% plot the function over domain
surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
% tangent plane equation and points
z = @(x,y) f(xq,yq) + fxq*(x-xq) + fyq*(y-yq);
zz = z(xx,yy);
% plot tangent plain and point-of-intersection
surf(xx,yy,zz);
plot3(1,1,f(1,1), 'or', 'markerfacecolor', 'r', 'markersize', 5);

Más respuestas (0)
Ver también
Categorías
Más información sobre Surface and Mesh Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!