Sketch the graph using matlab

3 visualizaciones (últimos 30 días)
Ta Duc
Ta Duc el 5 de Jul. de 2021
Comentada: Ta Duc el 5 de Jul. de 2021
Draw the graph of f and its tangent plane at the given point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. f(x, y)=[xy sin(x-y)]/[1+x^2+y^2], and the given point(1, 1, 0)
  2 comentarios
KSSV
KSSV el 5 de Jul. de 2021
What have you attempted?
Ta Duc
Ta Duc el 5 de Jul. de 2021
I’ve just finished my hand-written solving but i’m not good at matlab so i need you to solve the problem by using matlab. Thank u so much🥰

Iniciar sesión para comentar.

Respuesta aceptada

Scott MacKenzie
Scott MacKenzie el 5 de Jul. de 2021
Editada: Scott MacKenzie el 5 de Jul. de 2021
I think this is what you are looking for. NOTE: My script is based on code in Find Tangent Plane to Surface which you should review for further details.
% function domain
x = -3:0.25:3;
y = -3:0.25:3;
% your function
f = @(x,y) (x .* y .* sin(x-y)) ./ (1 + x.^2 + y.^2);
% use gradient to find partial derivatives of f.
[xx, yy] = meshgrid(x,y);
[fx, fy] = gradient(f(xx,yy), 0.25);
% find tangent plane at query point of interest
xq = 1;
yq = 1;
t = (xx == xq) & (yy == yq);
indt = find(t);
fxq = fx(indt);
fyq = fy(indt);
% plot the function over domain
surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
% tangent plane equation and points
z = @(x,y) f(xq,yq) + fxq*(x-xq) + fyq*(y-yq);
zz = z(xx,yy);
% plot tangent plain and point-of-intersection
surf(xx,yy,zz);
plot3(1,1,f(1,1), 'or', 'markerfacecolor', 'r', 'markersize', 5);
  1 comentario
Ta Duc
Ta Duc el 5 de Jul. de 2021
@Scott MacKenzie Thank u so much. I'm very appriciate with your code. <3

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Surface and Mesh Plots en Help Center y File Exchange.

Productos


Versión

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by