How to store all outputs from this nested for loop

2 visualizaciones (últimos 30 días)
Leo Tu
Leo Tu el 9 de Jul. de 2021
Comentada: Leo Tu el 9 de Jul. de 2021
I have this for loop which goes through 3 different variables. I need to record all outputs so that I can plot the 3 variables and the outputs as a 3D colour surface plot similar to the second plot here https://www.mathworks.com/help/matlab/ref/surf.html
At the moment it only gives the last output so if someone can point me in the right direction to gettiing all outputs.
for s=0:9 % Variable 1
for om=0.1:0.1:1 % Variable 2
for mu=0.1:0.1:1 % Variable 3
nll = mylikelihood(s,om,mu); % This is a function I made.
end
end
end
Also if anyone could see how I can vectorise the code so that it runs faster that would be appreciated.
  2 comentarios
Walter Roberson
Walter Roberson el 9 de Jul. de 2021
That code cannot be vectorized unless your function can be vectorized, but you did not show the code for your function so we do not know what can be done with it.
Leo Tu
Leo Tu el 9 de Jul. de 2021
Thank you @Walter Roberson, the function is quite long as it contains a function itself and requires the temperatures vector attached. I'm not sure if it can be vectorized any further.
function nll = mylikelihood(s,om,mu)
% output; nll is the negative log likelihood
% input; s is lag, om is decay rate, mu is baseline rate
% T is temperatures, t = time in days
load("Temperature.mat")
T = T'; % from column vector to row vector
AT = T-min(T); % this is the adjusted positive temperatures
r = mypoiss(5,0.5,1); % this function can be seen below
t = max(s)+1:numel(AT);
for ti = 1:numel(t)
k = abs(s:-1:(s-t(ti)+1));
id = ((t(ti)-1):-1:0)+1;
lambda(t(ti)) = mu+sum(om.^k.*AT(id))/sum(om.^k);
% store all the results
end
nll = 0;
nll = nll - (r(ti).*log(lambda(t(ti)))) + (lambda(t(ti)));
end
function r = mypoiss(s,om,mu)
% output; r is synthetic time series for number of cases
% input; s is lag, om is decay rate, mu is baseline rate
% T is temperatures, t = time in days
load("Temperature.mat")
T = T'; % from column vector to row vector
AT = T-min(T); % this is the adjusted positive temperatures
for t=s+1:length(AT)
k = abs(s:-1:(s-t+1));
id=[(t-1):-1:0]+1;
lambda(t) = mu+sum(om.^k.*AT(id))/sum(om.^k);
end
r = poissrnd(lambda);

Iniciar sesión para comentar.

Respuesta aceptada

Stephen23
Stephen23 el 9 de Jul. de 2021
Vs = 0:9; % Variable 1
Vom = 0.1:0.1:1; % Variable 2
Vmu = 0.1:0.1:1; % Variable 3
Ns = numel(Vs);
Nom = numel(Vom);
Nmu = numel(Vmu);
nll = nan(Ns,Nom,Nmu);
for k1 = 1:Ns
for k2 = 1:Nom
for k3 = 1:Nmu
nll(k1,k2,k3) = mylikelihood(Vs(k1),Vom(k2),Vmu(k3));
end
end
end

Más respuestas (0)

Categorías

Más información sobre Graphics Performance en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by