solving a complex equation

5 visualizaciones (últimos 30 días)
cm
cm el 20 de Sept. de 2013
I want to solve this equation to find a formula that computes "p" in terms of "q". Said differently, the variable is "p" and the parameter is "q".
the equation is " p.^2 .*(1-q).*(2.*q.*(1-p.^2)).^(2.*p) -2.*(1-p).*(1-q.*(1-p)).*(p+q.*(1-p))"
and there is a constraint for "p" and "q" since they are probabilities between 0 to 1
I will be so pleased if some one kindly let me know how to do it?
Thanks in advance

Respuesta aceptada

Matt J
Matt J el 20 de Sept. de 2013
Editada: Matt J el 20 de Sept. de 2013
I doubt a closed form expression exists. You could solve numerically, using fzero
fun=@(p) p.^2 .*(1-q).*(2.*q.*(1-p.^2)).^(2.*p) -2.*(1-p).*(1-q.*(1-p)).*(p+q.*(1-p));
p=fzero(fun,[0,1]);
However, it is unclear to me whether multiple solutions for p might exist for a given q, even when both are constrained to [0,1]. If so, fzero will find only one of them.
  5 comentarios
Matt J
Matt J el 20 de Sept. de 2013
Editada: Matt J el 20 de Sept. de 2013
No, I don't think a closed form expression is possible. If you didn't have the '^2*p' in there, it would be a 4th order polynomial in p. Closed form expressions do exist in that case for all the roots. They would be fairly ugly expressions and you would have to analyze which root(s) lay in [0,1].
With the power of 2*p, though, it looks rather unlikely you'd find something closed form. But, if you have the Symbolic Math Toolbox, you could try the SOLVE command, to see what it gives you.
cm
cm el 20 de Sept. de 2013
Yes You are right! the power of 2*p makes it so difficult to reach the closed form. I have to look for another way to solve this equation, but it seems a bit confusing! thanks anyway

Iniciar sesión para comentar.

Más respuestas (1)

Walter Roberson
Walter Roberson el 20 de Sept. de 2013
If the overall expression is to equal 0 (rather than it being of the form y = .... and needing to solve for given y and p), then the expression given has two solution families:
p = 0, q = 1
p = 1, q = anything in [0 to 1]
  2 comentarios
Roger Stafford
Roger Stafford el 20 de Sept. de 2013
It also has a solution at p = 0 and q = 0.
cm
cm el 21 de Sept. de 2013
Yes that's true!
I also added another equation to the first one, so that it may seem easier to find better answers for these equations. Thank you

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by