Accelerate nested bsxfun double loop?
22 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a simple double loop that requires multiple 'repmat' tasks in each iteration. I'm currently using bsxfun to avoid repmats, but have found it to be only a little faster than repmat/elementwise multiplication.
Any suggestions on speeding this up?
n = 200;
U = rand(n);
M = zeros(n); % preallocate matrix
a = rand(1,n);
b = rand(1,n);
SZI = bsxfun(@times,a,b');
for j = 1 : n
j
for i = 1 : n
if i ~= j
plusvec = U(j,:).^2 - U(i,:).*U(j,:);
timesvec = U(i,:) - U(j,:);
M(i,j) = sum(sum(SZI.*(bsxfun(@plus,bsxfun(@times,U,timesvec),plusvec))));
end
end
end
0 comentarios
Respuestas (2)
Sean de Wolski
el 7 de Oct. de 2013
Editada: Sean de Wolski
el 7 de Oct. de 2013
Usually two dimensional:
bsxfun(@times
Can be replaced with matrix multiplication:
SZC = b'*a;
isequal(SZC,SZI)
ans =
1
More Being a fan of "ez" speedups, I turned the outer for-loop into a parfor-loop:
With two for-loops:
timeit(@()A89455(200),0)
ans =
6.3238
With the outer loop being a parfor-loop with four local workers:
timeit(@()A89455(200),0)
ans =
3.7519
A89455 is your code in a function taking n as an input.
0 comentarios
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!