fsolve

13 visualizaciones (últimos 30 días)
Liber-T
Liber-T el 17 de Jun. de 2011
Is there a way to accelerate the fsolve function, with the least lost of precision possible. In:
beta(n+1)=fsolve(F,beta(n))
  6 comentarios
Liber-T
Liber-T el 20 de Jun. de 2011
F=@(x)10000000000000*det([0 besselj(0,(sqrt(Ko^2*Ed-(x)^2))*b) (i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*b)) -(i*bessely(0,sqrt((Ko^2-(x)^2))*b)+besselj(0,sqrt((Ko^2-(x)^2))*b));y(length(t),1) -besselj(0,(sqrt(Ko^2*Ed-(x)^2))*a) -(i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*a)) 0;0 -Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*b)/((sqrt(Ko^2*Ed-(x)^2))) -Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*b))/((sqrt(Ko^2*Ed-(x)^2))) (i*bessely(1,sqrt((Ko^2-(x)^2))*b)+besselj(1,sqrt((Ko^2-(x)^2))*b))/((sqrt(Ko^2-(x)^2)));-(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))*-y(length(t),2)/(((Ko^2*(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))-(x)^2))) Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*a)/((sqrt(Ko^2*Ed-(x)^2))) Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*a))/((sqrt(Ko^2*Ed-(x)^2))) 0]);
Liber-T
Liber-T el 20 de Jun. de 2011
s=0.1
t=0.001
f=200000000
%a=0.013;
%b=0.015;
%Ed=4.52;
omega=f*2*pi;
%v/omega=t
v=t*omega;
omegap=omega/s;
Eo=8.85418782*10^-12;
muo=1.25663706*10^-6;
Ko=sqrt((omega^2)*Eo*muo);
Ep=1-((omegap^2)/(omega*(omega-i*v)));
The answer here is 8.4049+0.0038*i

Iniciar sesión para comentar.

Respuesta aceptada

Sean de Wolski
Sean de Wolski el 17 de Jun. de 2011
preallocate beta
beta = zeros(nmax+1,1);
beta(1) = beta_of_1;
for ii = 1:nmax
beta(ii+1) = fsolve(F,beta(ii));
end
EDIT more stuff:
You calculate:
  • 'sqrt((Ko^2-(x)^2))*b': 4x
  • 'sqrt((Ko^2*Ed-(x)^2))*a': 4x
  • the bessel functions multiple times a pop.
Turn your function handle into a function. Make each of these calculations once, then use them multiple times.
  1 comentario
Liber-T
Liber-T el 17 de Jun. de 2011
Thnks, but I already know that trick, is there something else for fsolve?

Iniciar sesión para comentar.

Más respuestas (1)

Walter Roberson
Walter Roberson el 17 de Jun. de 2011
fsolve() can be much faster if you can constrain the range to search in.
  2 comentarios
Liber-T
Liber-T el 17 de Jun. de 2011
how do I constrain the range
Walter Roberson
Walter Roberson el 20 de Jun. de 2011
Sorry it turns out that fsolve() has no way of constraining ranges. fzero() can operate over an interval, if your function has only one independent variable.

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by