size of nonzero entries in each row of a matrix without loop
23 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Maider Marin
el 8 de Feb. de 2011
Comentada: Mbvalentin
el 14 de Mzo. de 2016
Let's explained with an example if I have h =
0 1 2 3
1 0 0 0
5 0 1 0
there is any function that will return the number of nonzero elements per row something like c =
3
1
2
but without a loop. I know I can use nnz per row
something like
for i=1: numRows
c(i)=nnz(h(i,:));
end
but there is any way to do it without a loop?
I will really appreciate any suggestions
0 comentarios
Respuesta aceptada
Walter Roberson
el 8 de Feb. de 2011
c = sum(h~=0,2);
6 comentarios
Paulo Silva
el 15 de Mzo. de 2011
B = sum(A,dim) sums along the dimension of A specified by scalar dim. The dim input is an integer value from 1 to N, where N is the number of dimensions in A. Set dim to 1 to compute the sum of each column, 2 to sum rows, etc.
Más respuestas (3)
stef stef
el 15 de Mzo. de 2011
thank you Walter!Your answer worked fine with me, although i didn't exactly understand what 0,2 does..I thought sum was only to add values of elements.
1 comentario
Mbvalentin
el 14 de Mzo. de 2016
It's not a decimal point (like a = 0,2). The comma is just dividing the two input arguments that the 'sum' function can take. In this case he is first creating a logical matrix that has ones for every element in h that is not equal to 0 (that's what h ~= 0 does), and then this result vector is inputed in the sum function.
Now, the sum function does the summatory of the input vector (or matrix) in a certain direction. The default direction is '1' (this is, along the row direction). I.E., assume we have the following matrix:
M = [10 10 0; 0 10 1; 1 0 1];
The result of L = (M ~= 0) would be:
L = [1 1 0; 0 1 1; 1 0 1];
Now, the results of the sum of 'M' on each direction are:
sum(M,1) = [11, 20 2]; sum(M,2) = [20; 11; 2].
As the result of the logical matrix L is a one row vector, we need to add the values along the 'columns-direction', which is '2'. That's why here Walter used the sum(MATRIX,2), to sum along the columns.
Paulo Silva
el 15 de Mzo. de 2011
Another option but not so good like Walter suggestion
a=[0 1 2 3
1 0 0 0
5 0 1 0]
sum(arrayfun(@any,a(1:size(a,1),:)),2)
ans =[3;1;2]
0 comentarios
Gabriel
el 2 de Jul. de 2013
Keep in mind, the previous answers may work, but they require a lot of memory if your array is big (basically duplicates it).
If working with a LOT of data and facing out of memory errors, the for loop with nnz might be the way to go.
0 comentarios
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!