A prime-sided rectangle is a rectangle having sides represented by prime numbers. The figure below shows all the possible prime-sided rectangles whose areas are less than or equal to 25:
Given an area limit 'n', count the total number of prime-sided rectangles that can be formed , with areas less than or equal to 'n'.
In the figure above, we can see that there are only 9 prime-sided recatangles having areas are less than or equal to 25. Therefore, for n = 25 the output should be 9. For n = 100, there are 34 such rectangles.
NOTE: Rotations are not important and are counted only once.

Solution Stats

14 Solutions

8 Solvers

Last Solution submitted on Nov 28, 2025

Last 200 Solutions

Problem Comments

Solution Comments

Show comments
Loading...