Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter

Versión 1.0.0.0 (2,37 KB) por Yi Cao
A function using the unscented Kalman filter to perform nonlinear least square nonlinear optimizatio
10,4K Descargas
Actualizado 4 feb 2008

Ver licencia

The Kalman filter can be interpreted as a feedback approach to minimize the least equare error. It can be applied to solve a nonlinear least square optimization problem. This function provides a way using the unscented Kalman filter to solve nonlinear least square optimization problems. Three examples are included: a general optimization problem, a problem to solve a set of nonlinear equations represented by a neural network model and a neural network training problem.

This function needs the unscented Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18217&objectType=FILE

Citar como

Yi Cao (2026). Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter (https://es.mathworks.com/matlabcentral/fileexchange/18356-nonlinear-least-square-optimization-through-parameter-estimation-using-the-unscented-kalman-filter), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2007a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Versión Publicado Notas de la versión
1.0.0.0

update description