Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
The Kalman filter can be interpreted as a feedback approach to minimize the least equare error. It can be applied to solve a nonlinear least square optimization problem. This function provides a way using the unscented Kalman filter to solve nonlinear least square optimization problems. Three examples are included: a general optimization problem, a problem to solve a set of nonlinear equations represented by a neural network model and a neural network training problem.
This function needs the unscented Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18217&objectType=FILE
Citar como
Yi Cao (2024). Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter (https://www.mathworks.com/matlabcentral/fileexchange/18356-nonlinear-least-square-optimization-through-parameter-estimation-using-the-unscented-kalman-filter), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Control Systems > System Identification Toolbox > Online Estimation >
- Mathematics and Optimization > Optimization Toolbox > Least Squares >
Etiquetas
Agradecimientos
Inspirado por: Learning the Unscented Kalman Filter, Unconstrained Optimization using the Extended Kalman Filter
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 | update description |