Pairwise Distance Matrix

Versión 1.9.0.0 (499 Bytes) por Mo Chen
Compute pairwise square Euclidean or Mahalanobis distances between points sets (fully optimized!).
4,2K Descargas
Actualizado 13 mar 2016

Ver licencia

This function computes pairwise distance between two sample sets and produce a matrix of square of Euclidean or Mahalanobis distances. The code is fully optimized by vectorization. Therefore it is much faster than the built-in function pdist.
When two matrices A and B are provided as input, this function computes the square Euclidean distances between them. If an extra positive definite matrix M is provided, it computes Mahalanobis distances.

If only one matrix A is provided, the function computes pairwise square Euclidean distances between vectors in A. In this case, it is equivalent to the square of pdist function in matlab statistics toolbox but much faster.

Sample code:
d=1000;n1=5000;n2=6000;
A=rand(d,n1);B=rand(d,n2);
M=rand(d,d);M=M*M'+eye(d);
D1=sqdist(A,B);
D2=sqdist(A);
D3=sqdist(A,B,M);

Detail explanation can be found in following blog post:
http://statinfer.wordpress.com/2011/11/14/efficient-matlab-i-pairwise-distances/

This function is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).

Citar como

Mo Chen (2024). Pairwise Distance Matrix (https://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.
Agradecimientos

Inspirado por: Pattern Recognition and Machine Learning Toolbox

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

sqdist/

Versión Publicado Notas de la versión
1.9.0.0

Cleaning up
minor tweak
update description

1.6.0.0

update description

1.5.0.0

update title and description

1.4.0.0

remove any redundant error check

1.3.0.0

update to support Mahalanobis distance. fix a bug for one dimensional case.

1.2.0.0

Add a centerization step for robustness purpose. Split the code for different number of input for efficiency purpose. Update comments.

1.1.0.0

update the description

1.0.0.0