Automatic Thresholding
This iterative technique for choosing a threshold was developed by Ridler and Calvard .The histogram is initially segmented into two parts using a starting threshold value such as 0 = 2B-1, half the maximum dynamic range.
The sample mean (mf,0) of the gray values associated with the foreground pixels and the sample mean (mb,0) of the gray values associated with the background pixels are computed. A new threshold value 1 is now computed as the average of these two sample means. The process is repeated, based upon the new threshold, until the threshold value does not change any more.
Reference :T.W. Ridler, S. Calvard, Picture thresholding using an iterative selection method, IEEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-632.
Citar como
zephyr (2026). Automatic Thresholding (https://es.mathworks.com/matlabcentral/fileexchange/3195-automatic-thresholding), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Image Segmentation > Image Thresholding >
Etiquetas
Agradecimientos
Inspiración para: Automatic Thresholding, Automatic Thresholding, Ridler-Calvard image thresholding
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 | BSD license |
