Variational Bayesian Inference for Gaussian Mixture Model

Versión 1.0.0.0 (5,38 KB) por Mo Chen
Variational Bayes method (mean field) for GMM can auto determine the number of components
8,1K Descargas
Actualizado 7 mar 2016

Ver licencia

This is the variational Bayesian inference method for Gaussian mixture model. Unlike the EM algorithm (maximum likelihood estimation), it can automatically determine the number of the mixture components k. Please try following code for a demo:
close all; clear;
d = 2;
k = 3;
n = 2000;
[X,z] = mixGaussRnd(d,k,n);
plotClass(X,z);
m = floor(n/2);
X1 = X(:,1:m);
X2 = X(:,(m+1):end);
% VB fitting
[y1, model, L] = mixGaussVb(X1,10);
figure;
plotClass(X1,y1);
figure;
plot(L)
% Predict testing data
[y2, R] = mixGaussVbPred(model,X2);
figure;
plotClass(X2,y2);
The data set is of 3 clusters. You only need to set a number (say 10) which is larger than the intrinsic number of clusters. The algorithm will automatically find the proper k.
Detail description of the algorithm can be found in the reference.
Pattern Recognition and Machine Learning by Christopher M. Bishop (P.474)

Upon the request, I provided the prediction function for out-of-sample inference.

This function is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).

Citar como

Mo Chen (2024). Variational Bayesian Inference for Gaussian Mixture Model (https://www.mathworks.com/matlabcentral/fileexchange/35362-variational-bayesian-inference-for-gaussian-mixture-model), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Error Detection and Correction en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

added prediction function, greatly simplified the code