MDP robot grid-world example

Applies value iteration to learn a policy for a robot in a grid world.
812 Descargas
Actualizado 24 nov 2015

Ver licencia

Applies value iteration to learn a policy for a Markov Decision Process (MDP) -- a robot in a grid world.
The world is freespaces (0) or obstacles (1). Each turn the robot can move in 8 directions, or stay in place. A reward function gives one freespace, the goal location, a high reward. All other freespaces have a small penalty, and obstacles have a large negative reward. Value iteration is used to learn an optimal 'policy', a function that assigns a
control input to every possible location.
video at https://youtu.be/gThGerajccM

This function compares a deterministic robot, one that always executes movements perfectly, with a stochastic robot, that has a small probability of moving +/-45degrees from the commanded move. The optimal policy for a stochastic robot avoids narrow passages and tries to move to the center of corridors.

From Chapter 14 in 'Probabilistic Robotics', ISBN-13: 978-0262201629, http://www.probabilistic-robotics.org

Aaron Becker, March 11, 2015

Citar como

Aaron T. Becker's Robot Swarm Lab (2025). MDP robot grid-world example (https://es.mathworks.com/matlabcentral/fileexchange/49992-mdp-robot-grid-world-example), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2014b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

added link to video https://youtu.be/gThGerajccM