k-means, mean-shift and normalized-cut segmentation

Versión 1.0.0.0 (25,1 KB) por Alireza
k-means, mean-shift and normalized-cut segmentation
9,3K Descargas
Actualizado 27 ago 2015

Ver licencia

This code implemented a comparison between “k-means” “mean-shift” and “normalized-cut” segmentation
Teste methods are:
Kmeans segmentation using (color) only
Kmeans segmentation using (color + spatial)
Mean Shift segmentation using (color) only
Mean Shift segmentation using (color + spatial)
Normalized Cut (inherently uses spatial data)
kmeans parameter is "K" that is Cluster Numbers
meanshift parameter is "bw" that is Mean Shift Bandwidth
ncut parameters are "SI" Color similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment

an implementation by "Naotoshi Seo" with a little modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html". It is sensitive in choosing parameters.
an implementation by "Bryan Feldman" is used for “mean-shift clustering"

Citar como

Alireza (2024). k-means, mean-shift and normalized-cut segmentation (https://www.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2011a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Cluster Analysis and Anomaly Detection en Help Center y MATLAB Answers.
Agradecimientos

Inspirado por: K-means clustering

Inspiración para: normalized-cut segmentation using color and texture data

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

FX submission added