Demo.m shows a K-means clustering demo
kmeans_function folder contains following files to show how it works as a function:
Test.m
km_fun.m
K-means clustering is one of the popular algorithms in clustering and segmentation. K-means clustering treats each feature point as having a location in space. The basic K-means algorithm then arbitrarily locates, that number of cluster centers in multidimensional measurement space. Each point is then assigned to the cluster whose arbitrary mean vector is closest. The procedure continues until there is no significant change in the location of class mean vectors between successive iterations of the algorithms.
This code is used in the following paper:
A. Asvadi, M. Karami, Y. Baleghi, “Efficient Object Tracking Using Optimized K-means Segmentation and Radial Basis Function Neural Networks,” International Journal of Information and Communication Technology Research (IJICT), vol. 4, no. 1, pp. 29-39, December 2011.
Citar como
Alireza (2024). K-means clustering (https://www.mathworks.com/matlabcentral/fileexchange/52579-k-means-clustering), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Statistics and Machine Learning Toolbox >
- AI and Statistics > Deep Learning Toolbox > Function Approximation, Clustering, and Control >
Etiquetas
Agradecimientos
Inspiración para: KM-RBF Tracker, Sparsified K-Means, K-means segmentation, k-means, mean-shift and normalized-cut segmentation, Radial Basis Function Neural Networks (with parameter selection using K-means)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Km/
Km/kmeans_function/
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0 | Required products modified
description modified
|
|