Sparsified K-Means

Extremely fast K-Means for big data
1,9K Descargas
Actualizado 18 abr 2018

KMeans for big data using preconditioning and sparsification, Matlab implementation. This has three main features:
(1) it has good code: same accuracy and 100x faster than Matlab's K-means for some cases. It also incorporates the latest research, such as using K-Means++ for the initialization (Note: Matlab's R2015 K-Means now uses K-Means++ too). The code is well-documented and conforms to the conventions of Matlab's K-means function when possible.
(2) optionally, you can enable the precondition-and-sample feature which is a novel method to allow efficient processing when the datasets are extremely large and slow to work with.

(3) for datasets that are a few TB in size, you can use the read-from-disk option so that the entire matrix is never loaded into RAM all at once.

Installation is easy; run `setup_kmeans.m` and it will install the mex files for you if necessary, and setup the appropriate paths.

Citar como

Stephen Becker (2024). Sparsified K-Means (https://github.com/stephenbeckr/SparsifiedKMeans), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2013a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0.0

Fixed typos in the description, no change to code (but github version is updated regularly)

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.