Bayesian Compressive Sensing (sparse coding) and Relevance Vector Machine

Versión 1.0.0.0 (6,21 KB) por Mo Chen
Bayesian methods (RVM) for learning sparse representation
1,9K Descargas
Actualizado 13 mar 2016

Ver licencia

Compressive sensing or sparse coding is to learn sparse representation of data. The simplest method is to use linear regression with L1 regularization. While this package provides Bayesian treatment for sparse coding problems.
The sparse coding problem is modeled as linear regression with a sparse prior (automatic relevance determination, ARD), which is also known as Relevance Vector Machine (RVM). The advantage is that it can do model selection automatically. As a result, this is no need to mannully specify the regularization parameter (learned from data) and better sparse recovery can be obtained. Please run the demo script in the package to give it a try.

This package is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).

Citar como

Mo Chen (2024). Bayesian Compressive Sensing (sparse coding) and Relevance Vector Machine (https://www.mathworks.com/matlabcentral/fileexchange/55879-bayesian-compressive-sensing-sparse-coding-and-relevance-vector-machine), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

update description
updated figure