ディープラーニングの判断要因を可視化す​るClass Activation Mapping

外観検査のOK/NGの判定をどこを注目して行っているかを可視化するClass Activation Mappingを実装したサンプルコードです。
386 Descargas
Actualizado 17 sep 2019

Ver licencia

CNNを用いたディープラーニングによる分類の判定精度は非常に高く、多くの領域での画像自動判定に利用されています。一方で、内部がブラックボックスで「なぜその判定になったのかわからない」点に不安を感じる方もいます。
このサンプルコードはCNN (GoogleNet)でOK/NGを判定したうえで、Class Activation Mappingという手法を用いて、どこの領域の特徴量が判定に強く結びついているかを可視化させています。
・誤判定がどこの領域によるのか
・正しい判定が人間が注視しているものと同じ判断要因か
を確認していくのに有効です。
[Keyword]
画像処理・IPCVデモ・ディープラーニング・深層学習・転移学習・入門・物体認識・画像分類・コンピュータビジョン・ニューラルネットワーク・人工知能・外観検査・可視化
Class Activation Mappingについてはこちら
Learning Deep Features for Discriminative Localization
Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Computer Science and Artificial Intelligence Laboratory, MIT

Citar como

Takuji Fukumoto (2024). ディープラーニングの判断要因を可視化するClass Activation Mapping (https://www.mathworks.com/matlabcentral/fileexchange/69357-class-activation-mapping), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018b
Compatible con cualquier versión desde R2018b hasta R2019a
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Pattern Recognition and Classification en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

CAM_GoogleNet_FEX

CAM_GoogleNet_FEX

Versión Publicado Notas de la versión
2.0.0

Add training workflow and data set.

1.0.0