Reinforcement Learning for Financial Trading
Reinforcement Learning For Financial Trading ?
How to use Reinforcement learning for financial trading using Simulated Stock Data using MATLAB.
Setup
To run:
Open RL_trading_demo.prj
Open workflow.mlx
Run workflow.mlx
Environment and Reward can be found in: myStepFunction.m
Overview:
The goal of the Reinforcement Learning agent is simple. Learn how to trade the financial markets without ever losing money.
Note, this is different from learn how to trade the market and make the most money possible.
The aim of this example was to show:
1. What reinforcement learning is
2. How it can be applied to trading the financial markets
3. Leave a starting point for financial professionals to use and enhance using their own domain expertise.
The example use an environment consisting of 3 stocks, $20000 cash & 15 years of historical data.
Stocks are:
Simulated via Geometric Brownian Motion or
Historical Market data (source: AlphaVantage: www.alphavantage.co)
Copyright 2020 The MathWorks, Inc.
Citar como
David Willingham (2023). Reinforcement Learning for Financial Trading (https://github.com/matlab-deep-learning/reinforcement_learning_financial_trading), GitHub. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
data
docs
No se pueden descargar versiones que utilicen la rama predeterminada de GitHub
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.2 | Updated Description |
|
|
1.0.1 | Added MATLAB Live script version |
|
|
1.0.0 |
|