Pre-trained 3D LeNet-5

Pre-trained Neural Network Toolbox Model for 3D LeNet-5 Network
220 Descargas
Actualizado 6 may 2021

Ver licencia

Our implementation of 2D LeNet-5 model achieved 98.48% accuracy on the grey-scale MNIST test set after training on its train set. To transfer the learnable parameters from pre-trained 2D LeNet-5 (MNIST) to 3D one, we duplicated 2D filters (copying them repeatedly) through the third dimension. This is possible since a video or a 3D image can be converted into a sequence of image slices. In the training process, we expect that the 3D LeNet-5 learns patterns in each frame. This model has about 260,000 learnable parameters.

simply, call "lenet5TL3Dfun()" function.

Citar como

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2020b
Compatible con cualquier versión desde R2019b
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.1

The relevant paper is published.

1.0.0