Skip to content
MathWorks - Mobile View
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
MathWorks
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión

Vídeos y webinars

  • MathWorks
  • Vídeos
  • Vídeos-Inicio
  • Buscar
  • Vídeos-Inicio
  • Buscar
  • Comuníquese con ventas
  • Software de prueba
4:41 Video length is 4:41.
  • Description
  • Full Transcript
  • Related Resources

Understanding Wavelets, Part 1: What Are Wavelets

From the series: Understanding Wavelets

This introductory video covers what wavelets are and how you can use them to explore your data in MATLAB®. The video focuses on two important wavelet transform concepts: scaling and shifting. The concepts can be applied to 2D data such as images.

Hello, everyone. In this introductory session, I will cover some basic wavelet concepts. I will be  primarily using a 1-D example, but the same concepts can be applied to images, as well. First, let's review what a wavelet is.  Real world data or signals frequently exhibit slowly changing trends or oscillations punctuated with transients. On the other hand, images have smooth regions interrupted by edges or abrupt changes in contrast. These abrupt changes are often the most iA=nteresting parts of the data, both perceptually and in terms of the information they provide. The Fourier transform is a powerful tool for data analysis. However, it does not represent abrupt changes efficiently. The reason for this is that the Fourier transform represents data as sum of sine waves, which are not localized in time or space. These sine waves oscillate forever. Therefore, to accurately analyze signals and images that have abrupt changes, we need to use a new class of functions that are well localized in time and frequency:  This brings us to the topic of Wavelets. A wavelet is a rapidly decaying, wave-like oscillation that has zero mean. Unlike sinusoids, which extend to infinity, a wavelet exists for a finite duration. Wavelets come in different sizes and shapes. Here are some of the well-known ones.  The availability of a wide range of wavelets is a key strength of wavelet analysis. To choose the right wavelet, you'll need to consider the application you'll use it for. We will discuss this in more detail in a subsequent  session. For now, let's focus on two important wavelet transform concepts: scaling and shifting. Let' start with scaling. Say you have a signal PSI(t).  Scaling refers to the process of stretching or shrinking the signal in time, which can be expressed using this equation [on screen]. S is the scaling factor, which is a positive value and corresponds to how much a signal is scaled in time. The scale factor is inversely proportional to frequency. For example, scaling a sine wave by 2 results in reducing its original frequency by half or by an octave. For a wavelet, there is a reciprocal relationship between scale and frequency with a constant of proportionality. This constant of proportionality is called the "center frequency" of the wavelet. This is because, unlike the sinewave, the wavelet has a band pass characteristic in the frequency domain. Mathematically, the equivalent frequency is defined using this equation [on screen], where Cf is center frequency of the wavelet, s is the wavelet scale, and delta t is the sampling interval. Therefore when you scale a wavelet by a factor of 2, it results in reducing the equivalent frequency by an octave. For instance, here is how a sym4 wavelet with center frequency 0.71 Hz corresponds to a sine wave of same frequency. A larger scale factor results in a stretched wavelet, which corresponds to a lower frequency. A smaller scale factor results in a shrunken wavelet, which corresponds to a high frequency. A stretched wavelet helps in capturing the slowly varying changes in a signal while a compressed wavelet helps in capturing abrupt changes. You can construct different scales that inversely correspond the equivalent frequencies, as mentioned earlier. Next, we'll discuss shifting. Shifting a wavelet simply means delaying or advancing the onset of the wavelet along the length of the signal. A shifted wavelet represented using this notation [on screen] means that the wavelet is shifted and centered at k. We need to shift the wavelet to align with the feature we are looking for in a signal.The two major transforms in wavelet analysis are Continuous and Discrete Wavelet Transforms. These transforms differ based on how the wavelets are scaled and shifted. More on this in the next session. But for now, you've got the basic concepts behind wavelets.

 

Related Products

  • Wavelet Toolbox

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

Wavelet Toolbox

  • Request Trial
  • Get Pricing

Up Next:

Learn more about the continuous wavelet transform and the discrete wavelet transform in this MATLAB Tech Talk by Kirthi Devleker.
5:24
Part 2: Types of Wavelet Transforms
View full series (5 Videos)

Related Videos:

5:17
Understanding Bode Plots, Part 2: What Are They?
3:13
Understanding State Machines, Part 1: What Are They?
7:51
Understanding Bode Plots, Part 3: Simple Systems
3:37
Understanding State Machines, Part 3: Mealy and Moore...
7:17
Understanding Bode Plots, Part 4: Complex Systems

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Comuníquese con ventas
  • Software de prueba

MathWorks

Accelerating the pace of engineering and science

MathWorks es el líder en el desarrollo de software de cálculo matemático para ingenieros

Descubra…

Explorar productos

  • MATLAB
  • Simulink
  • Software para estudiantes
  • Soporte para hardware
  • File Exchange

Probar o comprar

  • Descargas
  • Software de prueba
  • Comuníquese con ventas
  • Precios y licencias
  • Cómo comprar

Aprender a utilizar

  • Documentación
  • Tutoriales
  • Ejemplos
  • Vídeos y webinars
  • Formación

Obtener soporte

  • Ayuda para la instalación
  • MATLAB Answers
  • Consultoría
  • Centro de licencias
  • Comuníquese con soporte

Acerca de MathWorks

  • Ofertas de empleo
  • Sala de prensa
  • Misión social
  • Casos prácticos
  • Acerca de MathWorks
  • Select a Web Site United States
  • Centro de confianza
  • Marcas comerciales
  • Política de privacidad
  • Antipiratería
  • Estado de las aplicaciones

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Únase a la conversación