Procesamiento de audio mediante deep learning
Aplique deep learning a aplicaciones de procesamiento de audio y voz con Deep Learning Toolbox™ y Audio Toolbox™. Para obtener información sobre las aplicaciones de procesamiento de señales, consulte Procesamiento de señales mediante deep learning. Para obtener información sobre las aplicaciones de comunicaciones inalámbricas, consulte Comunicaciones inalámbricas mediante deep learning.
Apps
Signal Labeler | Etiquete atributos de señal, regiones y puntos de interés y extraiga características |
Funciones
Bloques
VGGish | VGGish embeddings extraction network |
VGGish Embeddings | Extract VGGish embeddings |
YAMNet | YAMNet sound classification network |
Sound Classifier | Classify sounds in audio signal |
OpenL3 | OpenL3 embeddings extraction network |
OpenL3 Embeddings | Extract OpenL3 embeddings |
Temas
- Deep Learning for Audio Applications (Audio Toolbox)
Learn common tools and workflows to apply deep learning to audio applications.
- Classify Sound Using Deep Learning (Audio Toolbox)
Train, validate, and test a simple long short-term memory (LSTM) to classify sounds.
- Transfer Learning with Pretrained Audio Networks in Deep Network Designer
This example shows how to interactively fine-tune a pretrained network to classify new audio signals using Deep Network Designer.
- Audio Transfer Learning Using Experiment Manager
Configure an experiment that compares the performance of multiple pretrained networks applied to a speech command recognition task using transfer learning.
- Speaker Identification Using Custom SincNet Layer and Deep Learning
Perform speech recognition using a custom deep learning layer that implements a mel-scale filter bank.
- Dereverberate Speech Using Deep Learning Networks
Train a deep learning model that removes reverberation from speech.
- Speech Command Recognition in Simulink
Detect the presence of speech commands in audio using a Simulink® model.
- Sequential Feature Selection for Audio Features
This example shows a typical workflow for feature selection applied to the task of spoken digit recognition.
- Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data
This example trains a spoken digit recognition network on out-of-memory audio data using a transformed datastore.
- Train Spoken Digit Recognition Network Using Out-of-Memory Features
This example trains a spoken digit recognition network on out-of-memory auditory spectrograms using a transformed datastore.
- Investigate Audio Classifications Using Deep Learning Interpretability Techniques
This example shows how to use interpretability techniques to investigate the predictions of a deep neural network trained to classify audio data.
- Accelerate Audio Deep Learning Using GPU-Based Feature Extraction
Leverage GPUs for feature extraction to decrease the time required to train an audio deep learning model.