Definir arquitecturas de redes neuronales superficiales
Defina arquitecturas y algoritmos de redes neuronales superficiales
Funciones
network | Crear una red neuronal superficial personalizada |
Ejemplos y procedimientos
Redes neuronales personalizadas
- Create Neural Network Object
Create and learn the basic components of a neural network object. - Configure Shallow Neural Network Inputs and Outputs
Learn how to manually configure the network before training using theconfigure
function. - Understanding Shallow Network Data Structures
Learn how the format of input data structures affects the simulation of networks. - Edit Shallow Neural Network Properties
Customize network architecture using its properties and use and train the custom network.
Redes neuronales históricas y alternativas
- Adaptive Neural Network Filters
Design an adaptive linear system that responds to changes in its environment as it is operating. - Perceptron Neural Networks
Learn the architecture, design, and training of perceptron networks for simple classification problems. - Clasificación con un perceptrón de dos entradas
Una neurona de límite rígido de dos entradas se entrena para clasificar cuatro vectores de entrada en dos categorías. - Outlier Input Vectors
A 2-input hard limit neuron is trained to classify 5 input vectors into two categories. - Normalized Perceptron Rule
A 2-input hard limit neuron is trained to classify 5 input vectors into two categories. - Linearly Non-separable Vectors
A 2-input hard limit neuron fails to properly classify 5 input vectors because they are linearly non-separable. - Radial Basis Neural Networks
Learn to design and use radial basis networks. - Aproximación de base radial
En este ejemplo se utiliza la función NEWRB para crear una red de base radial que aproxima una función definida por un conjunto de puntos de datos. - Radial Basis Underlapping Neurons
A radial basis network is trained to respond to specific inputs with target outputs. - Radial Basis Overlapping Neurons
A radial basis network is trained to respond to specific inputs with target outputs. - GRNN Function Approximation
This example uses functions NEWGRNN and SIM. - PNN Classification
This example uses functions NEWPNN and SIM. - Probabilistic Neural Networks
Use probabilistic neural networks for classification problems. - Generalized Regression Neural Networks
Learn to design a generalized regression neural network (GRNN) for function approximation. - Learning Vector Quantization (LVQ) Neural Networks
Create and train a Learning Vector Quantization (LVQ) Neural Network. - Learning Vector Quantization
An LVQ network is trained to classify input vectors according to given targets. - Linear Neural Networks
Design a linear network that, when presented with a set of given input vectors, produces outputs of corresponding target vectors. - Linear Prediction Design
This example illustrates how to design a linear neuron to predict the next value in a time series given the last five values. - Adaptive Linear Prediction
This example shows how an adaptive linear layer can learn to predict the next value in a signal, given the current and last four values.
Conceptos
- Flujo de trabajo para el diseño de redes neuronales
Aprenda los principales pasos del proceso de diseño de una red neuronal.
- Neuron Model
Learn about a single-input neuron, the fundamental building block for neural networks.
- Neural Network Architectures
Learn architecture of single- and multi-layer networks.