Reconocimiento de patrones
Entrene una red neuronal que desea generalizar a partir de entradas de ejemplo y sus clases, y entrene codificadores automáticos
Apps
Neural Net Pattern Recognition | Resolver un problema de reconocimiento de patrones utilizando redes prealimentadas de dos capas |
Clases
Autoencoder | Clase de codificador automático |
Funciones
Ejemplos y procedimientos
Diseño básico
- Pattern Recognition with a Shallow Neural Network
Use a shallow neural network for pattern recognition. - Deploy Shallow Neural Network Functions
Simulate and deploy trained shallow neural networks using MATLAB® tools. - Deploy Training of Shallow Neural Networks
Learn how to deploy training of shallow neural networks.
Escalabilidad y eficiencia del entrenamiento
- Shallow Neural Networks with Parallel and GPU Computing
Use parallel and distributed computing to speed up neural network training and simulation and handle large data. - Automatically Save Checkpoints During Neural Network Training
Save intermediate results to protect the value of long training runs.
Soluciones óptimas
- Choose Neural Network Input-Output Processing Functions
Preprocess inputs and targets for more efficient training. - Configure Shallow Neural Network Inputs and Outputs
Learn how to manually configure the network before training using theconfigure
function. - Dividir datos para realizar un entrenamiento de red neuronal óptimo
Use funciones para dividir los datos en conjuntos de entrenamiento, validación y prueba. - Choose a Multilayer Neural Network Training Function
Comparison of training algorithms on different problem types. - Improve Shallow Neural Network Generalization and Avoid Overfitting
Learn methods to improve generalization and prevent overfitting. - Train Neural Networks with Error Weights
Learn how to use error weighting when training neural networks. - Normalize Errors of Multiple Outputs
Learn how to fit output elements with different ranges of values.
Clasificación
- Crab Classification
This example illustrates using a neural network as a classifier to identify the sex of crabs from physical dimensions of the crab. - Wine Classification
This example illustrates how a pattern recognition neural network can classify wines by winery based on its chemical characteristics. - Cancer Detection
This example shows how to train a neural network to detect cancer using mass spectrometry data on protein profiles. - Character Recognition
This example illustrates how to train a neural network to perform simple character recognition.
Codificadores automáticos
- Train Stacked Autoencoders for Image Classification
This example shows how to train stacked autoencoders to classify images of digits.
Conceptos
- Flujo de trabajo para el diseño de redes neuronales
Aprenda los principales pasos del proceso de diseño de una red neuronal.
- Four Levels of Neural Network Design
Learn the different levels of using neural network functionality.
- Redes neuronales superficiales multicapa y entrenamiento de retropropagación
Flujo de trabajo para diseñar una red neuronal prealimentada superficial multicapa para el ajuste de funciones y el reconocimiento de patrones.
- Arquitectura de red neuronal superficial multicapa
Aprenda la arquitectura de una red neuronal superficial multicapa.
- Understanding Shallow Network Data Structures
Learn how the format of input data structures affects the simulation of networks.
- Conjuntos de datos de muestra para redes neuronales superficiales
Lista de conjuntos de datos de muestra que se pueden utilizar al experimentar con redes neuronales superficiales.
- Neural Network Object Properties
Learn properties that define the basic features of a network.
- Neural Network Subobject Properties
Learn properties that define network details such as inputs, layers, outputs, targets, biases, and weights.