fvtool
(To be removed) Visualize frequency response of DSP filters
Description
fvtool( displays the magnitude
response of the filter System object™.sysobj)
fvtool(
displays the response that is specified by the options.sysobj,options)
For example, to visualize the impulse response of an FIR filter System object, set options to
"impulse".
Fs = 96e3; filtSpecs = fdesign.lowpass(20e3,22.05e3,1,80,Fs);
firlp2 = design(filtSpecs,"equiripple",SystemObject=true);
fvtool(firlp2,"impulse");fvtool(____, visualizes the
response of the filter with each specified property set to the specified
value.Name=Value)
For more input options, see FVTool in Signal Processing Toolbox™.
Examples
Create two lowpass halfband decimation filters. The design
method in the first filter is set to "Equiripple" and in the
second filter is set to "Kaiser".
Specify the filter order to be 52. Specify the transition width in normalized frequency units.
filterspec = "Filter order and transition width"; Order = 52; TW = 0.1859; firhalfbanddecimEqui = dsp.FIRHalfbandDecimator(... NormalizedFrequency=true,... Specification=filterspec,... FilterOrder=Order,... TransitionWidth=TW,... DesignMethod="Equiripple"); firhalfbanddecimKaiser = dsp.FIRHalfbandDecimator(... NormalizedFrequency=true,...... Specification=filterspec,... FilterOrder=Order,... TransitionWidth=TW,... DesignMethod="Kaiser");
Plot the magnitude response. If the filter specifications are tight, say a
very high filter order with a very narrow transition width, the filter
designed using the "Kaiser" method converges more
effectively.
hfvtMag = fvtool(firhalfbanddecimEqui,firhalfbanddecimKaiser); legend(hfvtMag,["Equiripple","Kaiser"])
Input Arguments
Input filter, specified as one of the following filter System objects:
dsp.DCBlocker(since R2024b)
Example: firFilt =
dsp.FIRFilter(Numerator=designLowpassFIR(FilterOrder=130,
CutoffFrequency=2000/(8000/2)));
fvtool(firFilt)
Filter analysis options, specified as one of the following:
'magnitude'–– Magnitude response'phase'–– Phase response'freq'–– Frequency response'grpdelay'–– Group delay'phasedelay'–– Phase delay'impulse'–– Impulse response'step'–– Step response'polezero'–– Pole zero plot'coefficients'–– Coefficients vector'info'–– Filter information'magestimate'–– Magnitude response estimate'noisepower'–– Round-off noise power spectrum
Example: fvtool(firFilt,'freq')
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: firFilt =
dsp.FIRFilter(Numerator=designLowpassFIR(FilterOrder=130,
CutoffFrequency=2000/(8000/2)));
fvtool(firFilt,Arithmetic="single")
Sampling rate, specified as a scalar. This value determines the
Nyquist interval [-Fs/2 Fs/2] in
which the fvtool shows the frequency response of
the filters in the channelizer.
Data Types: single | double
Specify the arithmetic used during analysis. The analysis tool assumes
a double-precision filter when the arithmetic input is not specified and
the filter System object is unlocked. The 'Arithmetic'
property set to 'Fixed' applies only to filter System
objects with fixed-point properties.
When the 'Arithmetic' property is set to
'Fixed', the tool shows both the double-precision
reference filter and the quantized version of the filter. The
CoefficientsDataType property in the respective
filter System object is used in creating the quantized version of the filter
for all the analyses options except for the two below:
'magestimate'–– Magnitude response estimate.'noisepower'–– Round-off noise power spectrum
For these two analyses options, all the fixed-point settings are used in analyzing the quantized version of the filter.
Version History
Introduced before R2006aThe fvtool function will be removed in a future release. Use
filterAnalyzer instead. The fvtool and
filterAnalyzer functions perform differently, and using
filterAnalyzer requires updates to your code.
Consider an elliptical and an FIR filter.
[b,a] = ellip(5,5,60,[0.2 0.45]); dFd = dsp.FIRFilter;
This table shows typical usage of the
fvtool function, and shows how to update that code using
the filterAnalyzer function.
| Discouraged Usage | Recommended Replacement |
|---|---|
fvtool(b,a,dFd) |
filterAnalyzer(b,a,dFd) |
fvtool(b,a,dFd,Analysis="freq") |
filterAnalyzer(b,a,dFd,... Analysis="magnitude",Overlay="phase") |
fvtool(b,a,Fs=1000) |
filterAnalyzer(b,a,SampleRates=1000) |
fvtool(b,a,dFd,NumberofPoints=512, ...
FrequencyRange="[0, 2pi)",FrequencyScale="Log") |
filterAnalyzer(b,a,dFd,NFFT=512, ...
FrequencyRange="twosided",FrequencyScale="log") |
hfvt = fvtool(dFd); addfilter(hfvt,dfilt.df1(b,a)) |
fa = filterAnalyzer(dFd); addFilters(fa,b,a) |
hfvt = fvtool(dFd); setfilter(hfvt,dfilt.df1(b,a)) |
fa = filterAnalyzer(dFd,FilterNames="df"); replaceFilters(fa,b,a,FilterNames="df") |
hfvt = fvtool(b,a,dFd); deletefilter(hfvt,2) |
fa = filterAnalyzer(b,a,dFd,FilterNames=["ba" "dFd"]); deleteFilters(fa,FilterNames="dFd") |
hfvt = fvtool(b,a,dFd); legend(hfvt,"ba","dFd") |
filterAnalyzer(b,a,dFd,FilterNames=["ba" "dFd"]) |
hfvt = fvtool(b,a,dFd); zoom(hfvt,[0.4 0.7 -30 0]) |
fa = filterAnalyzer(b,a,dFd); zoom(fa,"xy",[0.4 0.7 -30 0]) |
fvtool(b,a,dFd,Analysis="noisepower") |
filterAnalyzer(b,a,dFd,Analysis="noisepsd") |
The second-order sections (SOS) format is not supported in Filter
Analyzer. Use the CTF format instead. If you specify a filter as an SOS
matrix, you must update your code. This table shows typical usage of the
fvtool function for a filter specified as an SOS matrix,
and shows how to update that code using the filterAnalyzer
function.
| Discouraged Usage | Recommended Replacement |
|---|---|
fvtool(sos) | filterAnalyzer(sos(:,1:3),sos(:,4:6)) or [ctfNum,ctfDen] = sos2ctf(sos); filterAnalyzer(ctfNum,ctfDen) |
hfvt = fvtool(sos); set(hfvt.SOSViewSettings,View="cumulative") |
[ctfNum,ctfDen] = sos2ctf(sos); fa = filterAnalyzer(ctfNum,ctfDen,CTFAnalysisMode="cumulative"); |
hfvt = fvtool(sos);
set(hfvt.SOSViewSettings,View="userdefined",UserDefined={3,1})
|
[ctfNum,ctfDen] = sos2ctf(sos);
fa = filterAnalyzer(ctfNum,ctfDen, ...
CTFAnalysisMode="specify",CTFAnalysisSections={3,1}); |
The dsp.BiquadFilter object issues a warning and will be removed
in a future release. Use the dsp.SOSFilter object instead. For more information on how to replace
your existing code, see the Compatibility Considerations
section in the dsp.BiquadFilter reference page.
Starting in R2024b, this function supports the dsp.DCBlocker object.
Starting in R2023b, the fvtool analysis function supports the
dsp.ParallelFilter and the dsp.Delay objects.
The dsp.BiquadFilter object will be removed in a future release.
Use the dsp.SOSFilter object instead.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)