tune
Ajuste los parámetros insfilterMARG
para reducir el error de estimación
Desde R2021a
Sintaxis
Descripción
ajusta las propiedades del objeto de filtro tunedMeasureNoise
= tune(filter
,measureNoise
,sensorData
,groundTruth
)insfilterMARG
, filter
y los ruidos de medición para reducir la raíz cuadrática media (RMS) error de estimación de estado entre los datos del sensor fusionado y ground-truth. La función también devuelve el ruido de medición ajustado, tunedMeasureNoise
. La función utiliza los valores de propiedad en el filtro y el ruido de medición proporcionado en la estructura measureNoise
como estimación inicial para el algoritmo de optimización.
especifica la configuración de ajuste basada en un objeto tunedMeasureNoise
= tune(___,config
)tunerconfig
, config
.
Ejemplos
Ajuste insfilterMARG
para optimizar la estimación de pose
Cargue los datos registrados del sensor y los datos ground-truth.
load('insfilterMARGTuneData.mat');
Cree tablas para los datos del sensor y los datos de verdad.
sensorData = table(Accelerometer, Gyroscope, ...
Magnetometer, GPSPosition, GPSVelocity);
groundTruth = table(Orientation, Position);
Cree un objeto de filtro insfilterMARG
que tenga algunas propiedades de ruido.
filter = insfilterMARG('State',initialState,... 'StateCovariance',initialStateCovariance,... 'AccelerometerBiasNoise',1e-7,... 'GyroscopeBiasNoise',1e-7,... 'MagnetometerBiasNoise',1e-7,... 'GeomagneticVectorNoise',1e-7);
Cree un objeto de configuración de ajustador para el filtro. Establezca el máximo de iteraciones en ocho. Además, configure los parámetros ajustables.
cfg = tunerconfig('insfilterMARG', 'MaxIterations', 8); cfg.TunableParameters = setdiff(cfg.TunableParameters, ... {'GeomagneticFieldVector', 'AccelerometerBiasNoise', ... 'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
Utilice la función de ruido del ajustador para obtener un conjunto de ruidos iniciales del sensor utilizados en el filtro.
measNoise = tunernoise('insfilterMARG')
measNoise = struct with fields:
MagnetometerNoise: 1
GPSPositionNoise: 1
GPSVelocityNoise: 1
Ajusteel filtro y obtenga los parámetros ajustados.
tunedParams = tune(filter, measNoise, sensorData, ...
groundTruth, cfg);
Iteration Parameter Metric _________ _________ ______ 1 AccelerometerNoise 2.5701 1 GPSPositionNoise 2.5446 1 GPSVelocityNoise 2.5279 1 GeomagneticVectorNoise 2.5268 1 GyroscopeNoise 2.5268 1 MagnetometerNoise 2.5204 2 AccelerometerNoise 2.5203 2 GPSPositionNoise 2.4908 2 GPSVelocityNoise 2.4695 2 GeomagneticVectorNoise 2.4684 2 GyroscopeNoise 2.4684 2 MagnetometerNoise 2.4615 3 AccelerometerNoise 2.4615 3 GPSPositionNoise 2.4265 3 GPSVelocityNoise 2.4000 3 GeomagneticVectorNoise 2.3988 3 GyroscopeNoise 2.3988 3 MagnetometerNoise 2.3911 4 AccelerometerNoise 2.3911 4 GPSPositionNoise 2.3500 4 GPSVelocityNoise 2.3164 4 GeomagneticVectorNoise 2.3153 4 GyroscopeNoise 2.3153 4 MagnetometerNoise 2.3068 5 AccelerometerNoise 2.3068 5 GPSPositionNoise 2.2587 5 GPSVelocityNoise 2.2166 5 GeomagneticVectorNoise 2.2154 5 GyroscopeNoise 2.2154 5 MagnetometerNoise 2.2063 6 AccelerometerNoise 2.2063 6 GPSPositionNoise 2.1505 6 GPSVelocityNoise 2.0981 6 GeomagneticVectorNoise 2.0971 6 GyroscopeNoise 2.0971 6 MagnetometerNoise 2.0875 7 AccelerometerNoise 2.0874 7 GPSPositionNoise 2.0240 7 GPSVelocityNoise 1.9601 7 GeomagneticVectorNoise 1.9594 7 GyroscopeNoise 1.9594 7 MagnetometerNoise 1.9499 8 AccelerometerNoise 1.9499 8 GPSPositionNoise 1.8802 8 GPSVelocityNoise 1.8035 8 GeomagneticVectorNoise 1.8032 8 GyroscopeNoise 1.8032 8 MagnetometerNoise 1.7959
Fusione los datos del sensor utilizando el filtro ajustado.
N = size(sensorData,1); qEstTuned = quaternion.zeros(N,1); posEstTuned = zeros(N,3); for ii=1:N predict(filter,Accelerometer(ii,:),Gyroscope(ii,:)); if all(~isnan(Magnetometer(ii,1))) fusemag(filter,Magnetometer(ii,:),... tunedParams.MagnetometerNoise); end if all(~isnan(GPSPosition(ii,1))) fusegps(filter,GPSPosition(ii,:),... tunedParams.GPSPositionNoise,GPSVelocity(ii,:),... tunedParams.GPSVelocityNoise); end [posEstTuned(ii,:),qEstTuned(ii,:)] = pose(filter); end
Calcule los errores RMS.
orientationErrorTuned = rad2deg(dist(qEstTuned,Orientation)); rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))
rmsOrientationErrorTuned = 0.8580
positionErrorTuned = sqrt(sum((posEstTuned - Position).^2,2)); rmsPositionErrorTuned = sqrt(mean(positionErrorTuned.^2))
rmsPositionErrorTuned = 1.7946
Visualiza los resultados.
figure(); t = (0:N-1)./filter.IMUSampleRate; subplot(2,1,1) plot(t,positionErrorTuned,'b'); title("Tuned insfilterMARG" + newline + ... "Euclidean Distance Position Error") xlabel('Time (s)'); ylabel('Position Error (meters)') subplot(2,1,2) plot(t, orientationErrorTuned,'b'); title("Orientation Error") xlabel('Time (s)'); ylabel('Orientation Error (degrees)');
Argumentos de entrada
filter
— Objeto de filtro
infilterMARG
objeto
Objeto de filtro, especificado como objeto insfilterMARG
.
measureNoise
— Ruido de medición
estructura
Ruido de medición, especificado como estructura. La función utiliza la entrada de ruido de medición como estimación inicial para ajustar el ruido de medición. La estructura debe contener estos campos:
Nombre del campo | Descripción |
---|---|
MagnetometerNoise | Varianza del ruido del magnetómetro, especificada como escalar en (μT) 2 |
GPSPositionNoise | Variación del ruido de la posición GPS, especificada como un escalar en m2 |
GPSVelocityNoise | Variación del ruido de la velocidad del GPS, especificada como un escalar en (m/s) 2 |
sensorData
— Datos del sensor
table
Datos del sensor, especificados como table
. En cada fila, los datos del sensor se especifican como:
Accelerometer
— Datos del acelerómetro, especificados como un vector de escalares de 1 por 3 en m2/s.Gyroscope
— Datos del giroscopio, especificados como un vector de escalares de 1 por 3 en rad/s.Magnetometer
— Datos del magnetómetro, especificados como un vector de escalares de 1 por 3 en μT.GPSPosition
— Datos de posición GPS, especificados como un vector de escalares de 1 por 3 en [grados, grados, metros].GPSVelocity
— Datos de velocidad GPS, especificados como un vector de escalares de 1 por 3 en m/s.
Si el sensor GPS no produce mediciones completas, especifique la entrada correspondiente para GPSPosition
y/o GPSVelocity
como NaN
. Si establece la propiedad Cost
de la entrada de configuración del ajustador, config
, en Custom
, entonces puede usar otros tipos de datos para la sensorData
entrada según su elección.
groundTruth
— Datos ground-truth
table
Datos reales, especificados como table
. En cada fila, la tabla puede contener opcionalmente cualquiera de estas variables:
Orientation
— Orientación desde el marco de navegación hasta el marco del cuerpo, especificada comoquaternion
o una matriz de rotación de 3 por 3.Position
— Posición en el marco de navegación, especificada como un vector de escalares de 1 por 3 en metros.Velocity
— Velocidad en el marco de navegación, especificada como un vector de escalares de 1 por 3 en m/s.DeltaAngleBias
— Sesgo del ángulo delta, especificado como un vector de escalares de 1 por 3 en radianes.DeltaVelocityBias
— Sesgo de velocidad delta, especificado como un vector de escalares de 1 por 3 en m/s.GeomagneticFieldVector
— Vector de campo geomagnético en el marco de navegación, especificado como un vector de escalares de 1 por 3.MagnetometerBias
— Sesgo del magnetómetro en la estructura del cuerpo, especificado como un vector de escalares de 1 por 3 en μT.
La función procesa cada fila de las tablas sensorData
y groundTruth
secuencialmente para calcular la estimación del estado y el error RMS a partir de ground-truth. Las variables de estado que no están presentes en la entrada groundTruth
se ignoran para la comparación. Las tablas sensorData
y groundTruth
deben tener el mismo número de filas.
Si establece la propiedad Cost
de la entrada de configuración del ajustador, config
, en Custom
, entonces puede usar otros tipos de datos para la groundTruth
entrada según su elección.
config
— Configuración del ajustador
tunerconfig
objeto
Configuración del ajustador, especificada como un objeto tunerconfig
.
Argumentos de salida
tunedMeasureNoise
— Ruido de medición ajustado
estructura
Ruido de medición ajustado, devuelto como una estructura. La estructura contiene estos campos.
Nombre del campo | Descripción |
---|---|
MagnetometerNoise | Variación del ruido del magnetómetro, especificada como escalar en (μT) 2 |
GPSPositionNoise | Variación del ruido de la posición GPS, especificada como un escalar en m2 |
GPSVelocityNoise | Variación del ruido de la velocidad del GPS, especificada como un escalar en (m/s) 2 |
Referencias
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.
Historial de versiones
Introducido en R2021a
Consulte también
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)