customLifetimePDModel
Create customLifetimePDModel object for lifetime probability
            of default
Since R2022b
Description
Create and analyze a customLifetimePDModel object to
            calculate the lifetime probability of default (PD) using this workflow:
- Fit a PD model that can predict PD for a loan or a portfolio of loans. 
- Define a function handle for a function that predicts the PD in your designated PD model. 
- Use - customLifetimePDModeland pass the specified function handle to create a- customLifetimePDModelobject. The designated model is now wrapped as a lifetime PD model.
- Use - predictto predict the conditional PD and- predictLifetimeto predict the lifetime PD.
- Use - modelDiscriminationto return AUROC and ROC data. You can plot the results using- modelDiscriminationPlot.
- Use - modelCalibrationto return the RMSE of the observed and predicted PD data. You can plot the results using- modelCalibrationPlot.
Creation
Syntax
Description
CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar=idvar_value,ResponseVar=responsevar_value)customLifetimePDModel object for a PD model
                        using required name-value arguments and sets model object properties.
CustomLifetimePDModel = customLifetimePDModel(___,Name=Value)CustomLifetimePDModel =
                            customLifetimePDModel(pdFcnHandle,IDVar="ID",AgeVar="YOB",Description="Scorecard
                            as lifetime PD
                            model",LoanVars="ScoreGroup",MacroVars={'GDP''Market'},ModelID="ScorecardLifetime",ResponseVar="Default",WeightsVar="Weights")
                        creates a CustomLifetimePDModel object. 
Input Arguments
Name-Value Arguments
Properties
Object Functions
| predict | Compute conditional PD | 
| predictLifetime | Compute cumulative lifetime PD, marginal PD, and survival probability | 
| modelDiscrimination | Compute AUROC and ROC data | 
| modelCalibration | Compute RMSE of predicted and observed PDs on grouped data | 
| modelDiscriminationPlot | Plot ROC curve | 
| modelCalibrationPlot | Plot observed default rates compared to predicted PDs on grouped data | 
Examples
References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.
