kfoldfun
Description
Examples
Create a cross-validated quantile regression model. Compute the cross-validation quantile loss. Then, compute the quantile loss using training set quantiles instead of predictions.
Simulate 1000 observations from the model where:
xis a 1000-by-1 vector of evenly spaced values between –10 and 10.is a 1000-by-1 vector of random normal errors with mean 0 and standard deviation 0.2.
rng("default"); % For reproducibility n = 1000; x = linspace(-10,10,n)'; y = 1 + 0.05*x + sin(x)./x + 0.2*randn(n,1);
Create a 5-fold cross-validated quantile neural network regression model. Use the 0.05, 0.5, and 0.95 quantiles.
CVMdl = fitrqnet(x,y,Quantiles=[0.05 0.5 0.95],KFold=5)
CVMdl =
RegressionPartitionedQuantileModel
CrossValidatedModel: 'QuantileNeuralNetwork'
PredictorNames: {'x1'}
ResponseName: 'Y'
NumObservations: 1000
KFold: 5
Partition: [1×1 cvpartition]
ResponseTransform: 'none'
Quantiles: [0.0500 0.5000 0.9500]
Properties, Methods
CVMdl is a RegressionPartitionedQuantileModel object that contains five trained CompactRegressionQuantileNeuralNetwork model objects (CVMdl.Trained).
Compute the cross-validation quantile loss.
L = kfoldLoss(CVMdl)
L = 1×3
0.0230 0.0875 0.0229
Each value in L corresponds to one quantile. For example, the first value L(1) is the quantile loss for the 0.05 quantile, averaged across the five folds.
Find the quantile loss when you use training set quantiles instead of test set predictions to compute residuals.
First, create the customQuantileLoss function. The function takes in a compact quantile regression model, training data, and test data, and returns the custom quantile loss. The residuals are defined as the difference between the test set responses and the training set quantiles, instead of the difference between the test set responses and the predicted test set responses.
function loss = customQuantileLoss(CMP,Xtrain,Ytrain,Wtrain, ... Xtest,Ytest,Wtest) residuals = Ytest - quantile(Ytrain,CMP.Quantiles); loss = residuals.*(CMP.Quantiles - (residuals<0)); loss = sum(Wtest.*loss)/sum(Wtest); end
To replicate the quantile loss used to compute L, you can use the following residual definition instead.
residuals = Ytest - predict(CMP,Xtest,Quantiles=CMP.Quantiles);
After creating the customQuantileLoss function, pass the function to kfoldfun, along with the cross-validated model CVMdl. Average the results over the five folds.
customL = mean(kfoldfun(CVMdl,@customQuantileLoss))
customL = 1×3
0.0436 0.2131 0.0484
The customL loss values are greater than the L loss values.
Input Arguments
Cross-validated quantile regression model, specified as a RegressionPartitionedQuantileModel object.
Cross-validated function, specified as a function handle. fun has the
syntax:
testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
CMPis a compact model stored in one element of theCVMdl.Trainedproperty.Xtrainis the training matrix of predictor values.Ytrainis the training array of response values.Wtraincontains the training weights for the observations.XtestandYtestare the test data, with associated weightsWtest.The returned value
testvalsmust have the same size across all folds.
Data Types: function_handle
Output Arguments
Cross-validation results, returned as a numeric matrix. vals
contains the arrays of testvals output returned by
fun, concatenated vertically over all folds. For example, if the
testvals output from every fold is a numeric vector of length
q, then kfoldfun returns a
CVMdl.KFold-by-q numeric matrix with one row per
fold.
Data Types: double
Version History
Introduced in R2025a
See Also
kfoldLoss | kfoldPredict | RegressionPartitionedQuantileModel
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)