reset
Syntax
Description
Examples
Create a default one-class support vector machine (SVM) model for incremental anomaly detection using the stochastic gradient descent (SGD) solver. Specify to standardize the predictor data. Reset the model after incremental training and see which parameters are reset.
IncrementalMdl = incrementalOneClassSVM(Solver="sgd",StandardizeData=true)IncrementalMdl =
incrementalOneClassSVM
IsWarm: 0
ContaminationFraction: 0
ScoreThreshold: 0
NumExpansionDimensions: 0
Lambda: 1.0000e-05
KernelScale: 1
Properties, Methods
IncrementalMdl is an incrementalOneClassSVM model object. All its properties are read-only. By default, the software sets the anomaly contamination fraction to 0 and the score threshold to 0.
IncrementalMdl must be fit to data before you can use it to perform any other operations.
Load Data
Load the 1994 census data stored in census1994.mat. The data set consists of demographic data from the US Census Bureau.
load census1994.matThe fit function of incrementalOneClassSVM does not support categorical predictors and does not use observations with missing values. Remove missing values in the data to reduce memory consumption and speed up training. Remove the categorical predictors.
adultdata = rmmissing(adultdata); adultdata = removevars(adultdata,["workClass","education","marital_status", ... "occupation","relationship","race","sex","native_country","salary"]);
Fit Incremental Model
Fit the incremental model IncrementalMdl to the data by using the fit function. To simulate a data stream, fit the model in chunks of 100 observations at a time. At each iteration:
Process 100 observations.
Overwrite the previous incremental model with a new one fitted to the incoming observations.
n = numel(adultdata(:,1)); numObsPerChunk = 100; nchunk = floor(n/numObsPerChunk); % Incremental fitting rng("default"); % For reproducibility for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1); iend = min(n,numObsPerChunk*j); idx = ibegin:iend; IncrementalMdl = fit(IncrementalMdl,adultdata(idx,:)); end
Display all the properties of the trained model object IncrementalMdl.
details(IncrementalMdl);
incrementalOneClassSVM with properties:
KernelScale: 1
Lambda: 1.0000e-05
NumExpansionDimensions: 256
SolverOptions: [1×1 struct]
Solver: 'sgd'
FittedLoss: 'hinge'
Mu: [37.9400 1.9217e+05 10.1980 567.7170 102.5340 40.7060]
Sigma: [12.8905 1.0789e+05 2.5006 2.4309e+03 431.7485 11.7970]
EstimationPeriod: 1000
IsWarm: 1
ContaminationFraction: 0
NumTrainingObservations: 29100
NumPredictors: 6
ScoreThreshold: 2.0912
ScoreWarmupPeriod: 0
PredictorNames: {'age' 'fnlwgt' 'education_num' 'capital_gain' 'capital_loss' 'hours_per_week'}
ScoreWindowSize: 1000
Methods, Superclasses
Reset Incremental Model
Reset the learned parameters by using the reset function, and compare them to the previous model to see which parameters are reset.
newMdl = reset(IncrementalMdl); details(newMdl)
incrementalOneClassSVM with properties:
KernelScale: 1
Lambda: 1.0000e-05
NumExpansionDimensions: 256
SolverOptions: [1×1 struct]
Solver: 'sgd'
FittedLoss: 'hinge'
Mu: [0 0 0 0 0 0]
Sigma: [1 1 1 1 1 1]
EstimationPeriod: 1000
IsWarm: 0
ContaminationFraction: 0
NumTrainingObservations: 0
NumPredictors: 6
ScoreThreshold: 0
ScoreWarmupPeriod: 0
PredictorNames: {'age' 'fnlwgt' 'education_num' 'capital_gain' 'capital_loss' 'hours_per_week'}
ScoreWindowSize: 1000
Methods, Superclasses
The reset function resets the warmup status of the model (IsWarm = 0), the score threshold, the number of training observations, and the estimated hyperparameters (Mu and Sigma).
Input Arguments
Incremental one-class SVM model, specified as an
incrementalOneClassSVM model object. You can create
Mdl directly or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function. For more details, see the incrementalOneClassSVM object page.
Version History
Introduced in R2023b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)