nearcorr
Compute nearest correlation matrix by minimizing Frobenius distance
Description
Examples
Compute the Nearest Correlation Matrix
Find the nearest correlation matrix in the Frobenius norm for a given nonpositive semidefinite matrix.
Specify an N
-by-N
symmetric matrix with all elements in the interval [-1, 1]
and unit diagonal.
A = [1.0000 0 0 0 -0.9360 0 1.0000 -0.5500 -0.3645 -0.5300 0 -0.5500 1.0000 -0.0351 0.0875 0 -0.3645 -0.0351 1.0000 0.4557 -0.9360 -0.5300 0.0875 0.4557 1.0000];
Compute the eigenvalues of A
using eig
.
eig(A)
ans = 5×1
-0.1244
0.3396
1.0284
1.4457
2.3107
The smallest eigenvalue is less than 0
, which indicates that A
is not a positive semidefinite matrix.
Compute the nearest correlation matrix using nearcorr
with the default Newton algorithm.
B = nearcorr(A)
B = 5×5
1.0000 0.0372 0.0100 -0.0219 -0.8478
0.0372 1.0000 -0.5449 -0.3757 -0.4849
0.0100 -0.5449 1.0000 -0.0381 0.0996
-0.0219 -0.3757 -0.0381 1.0000 0.4292
-0.8478 -0.4849 0.0996 0.4292 1.0000
Compute the eigenvalues of B
.
eig(B)
ans = 5×1
0.0000
0.3266
1.0146
1.4113
2.2475
All of the eigenvalues are greater than or equal to 0
, which means that B
is a positive semidefinite matrix.
When you use nearcorr
, you can specify the alternating projections algorithm by setting the name-value pair argument 'method'
to 'projection'
.
nearcorr(A,'method','projection')
ans = 5×5
1.0000 0.0372 0.0100 -0.0219 -0.8478
0.0372 1.0000 -0.5449 -0.3757 -0.4849
0.0100 -0.5449 1.0000 -0.0381 0.0996
-0.0219 -0.3757 -0.0381 1.0000 0.4292
-0.8478 -0.4849 0.0996 0.4292 1.0000
You can also impose elementwise weights by specifying the 'Weights'
name-value pair argument. For more information on elementwise weights, see Weights.
W = [0.0000 1.0000 0.1000 0.1500 0.2500
1.0000 0.0000 0.0500 0.0250 0.1500
0.1000 0.0500 0.0000 0.2500 1
0.1500 0.0250 0.2500 0.0000 0.2500
0.2500 0.1500 1 0.2500 0.0000];
nearcorr(A,'Weights',W)
ans = 5×5
1.0000 0.0014 0.0287 -0.0222 -0.8777
0.0014 1.0000 -0.4980 -0.7268 -0.4567
0.0287 -0.4980 1.0000 -0.0358 0.0878
-0.0222 -0.7268 -0.0358 1.0000 0.4465
-0.8777 -0.4567 0.0878 0.4465 1.0000
In addition, you can impose N
-by-1
vectorized weights by specifying the 'Weights'
name-value pair argument. For more information on vectorized weights, see Weights.
W = linspace(0.1,0.01,5)'
W = 5×1
0.1000
0.0775
0.0550
0.0325
0.0100
C = nearcorr(A,'Weights', W)
C = 5×5
1.0000 0.0051 0.0021 -0.0056 -0.8490
0.0051 1.0000 -0.5486 -0.3684 -0.4691
0.0021 -0.5486 1.0000 -0.0367 0.1119
-0.0056 -0.3684 -0.0367 1.0000 0.3890
-0.8490 -0.4691 0.1119 0.3890 1.0000
Compute the eigenvalues of C
.
eig(C)
ans = 5×1
0.0000
0.3350
1.0272
1.4308
2.2070
All of the eigenvalues are greater than or equal to 0
, which means that C
is a positive semidefinite matrix.
Generate a Correlation Matrix for Stocks with Missing Values
Use nearcorr
to create a positive semidefinite matrix for a correlation matrix for stocks with missing values.
Assume that you have stock values with missing values.
Stock_Missing = [59.875 42.734 47.938 60.359 NaN 69.625 61.500 62.125 53.188 49.000 39.500 64.813 34.750 56.625 83.000 44.500 55.750 50.000 38.938 62.875 30.188 43.375 NaN 29.938 65.500 51.063 45.563 69.313 48.250 62.375 85.250 46.875 69.938 47.000 52.313 71.016 37.500 59.359 61.188 48.219 61.500 44.188 NaN 57.000 35.313 55.813 51.500 62.188 59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080 NaN 48.700 60.300 68.580 61.250 70.340 61.590 90.350 52.900 52.690 54.230 61.670 68.170 NaN 57.870 88.640 57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840];
Use corr
to compute the correlation matrix and then use eig
to check if the correlation matrix is positive semidefinite.
A = corr(Stock_Missing, 'Rows','pairwise'); eig(A)
ans = 8×1
-0.1300
-0.0398
0.0473
0.2325
0.6278
1.6276
1.7409
3.8936
A
has eigenvalues that are less than 0
, which indicates that the correlation matrix is not positive semidefinite.
Use nearcorr
with this correlation matrix to generate a positive semidefinite matrix where all eigenvalues are greater than or equal to 0
.
B = nearcorr(A); eigenvalues = eig(B)
eigenvalues = 8×1
0.0000
0.0000
0.0180
0.2205
0.5863
1.6026
1.7258
3.8469
Copyright 2019 The MathWorks, Inc.
Input Arguments
A
— Input correlation matrix
matrix
Input correlation matrix, specified as an
N-by-N symmetric approximate
correlation matrix with all elements in the interval [-1
1]
and unit diagonal. The A
input may or
may not be a positive semidefinite matrix.
Example: A = [1.0000 0 0 0 -0.9360 0 1.0000 -0.5500 -0.3645
-0.5300 0 -0.5500 1.0000 -0.0351 0.0875 0 -0.3645 -0.0351 1.0000 0.4557
-0.9360 -0.5300 0.0875 0.4557 1.0000]
Data Types: single
| double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: nearcorr(A,'Tolerance',1e-7,'MaxIterations',500,'Method','newton','Weights',weight_vector)
returns a nearest correlation matrix by minimizing the Frobenius
distance.
Tolerance
— Termination tolerance for algorithm
1e-6
(default) | positive scalar
Termination tolerance for the algorithm, specified as the
comma-separated pair consisting of 'Tolerance'
and a
positive scalar.
Example: 'Tolerance',1e-7
Data Types: single
| double
MaxIterations
— Maximum number of solver iterations
200
(default) | positive integer
Maximum number of solver iterations, specified as the comma-separated
pair consisting of 'MaxIterations'
and a positive
integer.
Example: 'MaxIterations',500
Data Types: single
| double
Method
— Method for solving nearest correlation matrix problem
'newton'
(default) | 'projection'
Method for solving nearest correlation matrix problem, specified as
the comma-separated pair consisting of 'Method'
and
one of the values in the following table.
Value | Description |
---|---|
'newton' | The Newton algorithm is quadratically convergent. If you specify the
|
'projection' | The alternating projections algorithm can converge to the nearest correlation matrix with high accuracy, at best linearly. If you
specify the |
Example: 'Method','projection'
Data Types: char
| string
Weights
— Weights for confidence levels of entries in input matrix
[ ]
(default) | matrix
| vector
Weights for confidence levels of entries in the input matrix,
specified as the comma-separated pair consisting of
'Weights'
and either a symmetric matrix or an
N
-by-1
vector.
Symmetric matrix — When you specify
Weights
as a symmetric matrixW
with all elements >=0
to do elementwise weighting, the nearest correlation matrixY
is computed by minimizing the norm of (W ⚬ (A-Y)). Larger weight values place greater importance on the corresponding elements inA
.N
-by-1
vector — When you specifyWeights
as anN
-by-1
vectorw
with positive numeric values, the nearest correlation matrixY
is computed by minimizing the norm of (diag
(w)0.5 × (A-Y) ×diag
(w)0.5).
Note
Matrix weights put weight on individual entries of the correlation matrix. A full matrix must be specified, but you can control which entries are more important to match. Alternatively, vector weights put weight on a full column (and the corresponding row). Fewer weights need to be specified as compared to the matrix weights, but an entire column (and the corresponding row) is weighted by a single weight.
Example: 'Weights',W
Data Types: single
| double
Output Arguments
Y
— Nearest correlation matrix to input A
positive semidefinite matrix
Nearest correlation matrix to the input A
, returned
as a positive semidefinite matrix.
References
[1] Higham, N. J. "Computing the Nearest Correlation Matrix — A Problem from Finance." IMA Journal of Numerical Analysis. Vol. 22, Issue 3, 2002.
[2] Qi, H. and D. Sun. "An Augmented Lagrangian Dual Approach for the H-Weighted Nearest Correlation Matrix Problem." IMA Journal of Numerical Analysis. Vol. 31, Issue 2, 2011.
[3] Pang, J. S., D. Sun, and J. Sun. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems." Mathematics of Operation Research. Vol. 28, Number 1, 2003.
Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
This function fully supports thread-based environments. For more information, see Run MATLAB Functions in Thread-Based Environment.
Version History
Introduced in R2019b
See Also
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)