Documentation

series

Puiseux series

Description

example

series(f,var) approximates f with the Puiseux series expansion of f up to the fifth order at the point var = 0. If you do not specify var, then series uses the default variable determined by symvar(f,1).

example

series(f,var,a) approximates f with the Puiseux series expansion of f at the point var = a.

example

series(___,Name,Value) uses additional options specified by one or more Name,Value pair arguments. You can specify Name,Value after the input arguments in any of the previous syntaxes.

Examples

Find Puiseux Series Expansion

Find the Puiseux series expansions of univariate and multivariate expressions.

Find the Puiseux series expansion of this expression at the point x = 0.

syms x
series(1/sin(x), x)
ans =
x/6 + 1/x + (7*x^3)/360

Find the Puiseux series expansion of this multivariate expression. If you do not specify the expansion variable, series uses the default variable determined by symvar(f,1).

syms s t
f = sin(s)/sin(t);
symvar(f, 1)
series(f)
ans =
t

ans =
sin(s)/t + (7*t^3*sin(s))/360 + (t*sin(s))/6

To use another expansion variable, specify it explicitly.

syms s t
f = sin(s)/sin(t);
series(f, s)
ans =
s^5/(120*sin(t)) - s^3/(6*sin(t)) + s/sin(t)

Specify Expansion Point

Find the Puiseux series expansion of psi(x) around x = Inf. The default expansion point is 0. To specify a different expansion point, use the ExpansionPoint name-value pair.

series(psi(x), x, 'ExpansionPoint', Inf)
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

Alternatively, specify the expansion point as the third argument of series.

syms x
series(psi(x), x, Inf)
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

Specify Truncation Order

Find the Puiseux series expansion of exp(x)/x using different truncation orders.

Find the series expansion up to the default truncation order 6.

syms x
f = exp(x)/x;
s6 = series(f, x)
s6 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + 1

Use Order to control the truncation order. For example, approximate the same expression up to the orders 7 and 8.

s7 = series(f, x, 'Order', 7)
s8 = series(f, x, 'Order', 8)
s7 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + 1

s8 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + x^6/5040 + 1

Plot the original expression f and its approximations s6, s7, and s8. Note how the accuracy of the approximation depends on the truncation order.

fplot([s6 s7 s8 f])
legend('approximation up to O(x^6)','approximation up to O(x^7)',...
'approximation up to O(x^8)','exp(x)/x','Location', 'Best')
title('Puiseux Series Expansion') Specify Direction of Expansion

Find the Puiseux series approximations using the Direction argument. This argument lets you change the convergence area, which is the area where series tries to find converging Puiseux series expansion approximating the original expression.

Find the Puiseux series approximation of this expression. By default, series finds the approximation that is valid in a small open circle in the complex plane around the expansion point.

syms x
series(sin(sqrt(-x)), x)
ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

Find the Puiseux series approximation of the same expression that is valid in a small interval to the left of the expansion point. Then, find an approximation that is valid in a small interval to the right of the expansion point.

syms x
series(sin(sqrt(-x)), x)
series(sin(sqrt(-x)), x, 'Direction', 'left')
series(sin(sqrt(-x)), x, 'Direction', 'right')
ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

ans =
- x^(1/2)*1i - (x^(3/2)*1i)/6 - (x^(5/2)*1i)/120

ans =
x^(1/2)*1i + (x^(3/2)*1i)/6 + (x^(5/2)*1i)/120

Try computing the Puiseux series approximation of this expression. By default, series tries to find an approximation that is valid in the complex plane around the expansion point. For this expression, such approximation does not exist.

series(real(sin(x)), x)
Error using sym/series>scalarSeries (line 90)
Cannot compute a series expansion of the input.

However, the approximation exists along the real axis, to both sides of x = 0.

series(real(sin(x)), x, 'Direction', 'realAxis')
ans =
x^5/120 - x^3/6 + x

Input Arguments

collapse all

Input to approximate, specified as a symbolic expression or function. It also can be a vector, matrix, or multidimensional array of symbolic expressions or functions.

Expansion variable, specified as a symbolic variable. If you do not specify var, then series uses the default variable determined by symvar(f,1).

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You also can specify the expansion point as a Name,Value pair argument. If you specify the expansion point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: series(psi(x),x,'ExpansionPoint',Inf,'Order',9)

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You can also specify the expansion point using the input argument a. If you specify the expansion point both ways, then the Name,Value pair argument takes precedence.

Truncation order of Puiseux series expansion, specified as a positive integer or a symbolic positive integer.

series computes the Puiseux series approximation with the order n - 1. The truncation order n is the exponent in the O-term: O(varn).

Direction for area of convergence of Puiseux series expansion, specified as:

 'left' Find a Puiseux series approximation that is valid in a small interval to the left of the expansion point. 'right' Find a Puiseux series approximation that is valid in a small interval to the right of the expansion point. 'realAxis' Find a Puiseux series approximation that is valid in a small interval on the both sides of the expansion point. 'complexPlane' Find a Puiseux series approximation that is valid in a small open circle in the complex plane around the expansion point. This is the default value.

Tips

• If you use both the third argument a and the ExpansionPoint name-value pair to specify the expansion point, the value specified via ExpansionPoint prevails.