jacobian
Jacobian matrix of symbolic function
Syntax
Description
jacobian(
computes
the Jacobian matrix of symbolic
function f
,v
)f
with respect to v
. The (i,j) element of the result is .
Examples
The Jacobian of a vector function is a matrix of the partial derivatives of that function.
Compute the Jacobian matrix of [x*y*z,y^2,x + z]
with respect to [x,y,z]
.
syms x y z jacobian([x*y*z,y^2,x + z],[x,y,z])
ans =
Now, compute the Jacobian of [x*y*z,y^2,x + z]
with respect to [x;y;z]
.
jacobian([x*y*z,y^2,x + z], [x;y;z])
ans =
The Jacobian matrix is invariant to the orientation of the vector in the second input position.
The Jacobian of a scalar function is the transpose of its gradient.
Compute the Jacobian of 2*x + 3*y + 4*z
with respect to [x,y,z]
.
syms x y z jacobian(2*x + 3*y + 4*z,[x,y,z])
ans =
Now, compute the gradient of the same expression.
gradient(2*x + 3*y + 4*z,[x,y,z])
ans =
The Jacobian of a function with respect to a scalar is the first derivative of that function. For a vector function, the Jacobian with respect to a scalar is a vector of the first derivatives.
Compute the Jacobian of [x^2*y,x*sin(y)]
with respect to x
.
syms x y jacobian([x^2*y,x*sin(y)],x)
ans =
Now, compute the derivatives.
diff([x^2*y,x*sin(y)],x)
ans =
Specify polar coordinates , , and that are functions of time.
syms r(t) phi(t) theta(t)
Define the coordinate transformation form spherical coordinates to Cartesian coordinates.
R = [r*sin(phi)*cos(theta), r*sin(phi)*sin(theta), r*cos(phi)]
R(t) =
Find the Jacobian of the coordinate change from spherical coordinates to Cartesian coordinates.
jacobian(R,[r,phi,theta])
ans(t) =
Input Arguments
Scalar or vector function, specified as a symbolic expression, function, or vector.
If f
is a scalar, then the Jacobian matrix of
f
is the transposed gradient of f
.
Vector of variables or functions with respect to which you compute Jacobian,
specified as a symbolic variable, symbolic function, or vector of symbolic variables. If
v
is a scalar, then the result is equal to the transpose of
diff(f,v)
. If v
is an empty symbolic object,
such as sym([])
, then jacobian
returns an empty
symbolic object.
More About
The Jacobian matrix of the vector function f = (f1(x1,...,xn),...,fn(x1,...,xn)) is the matrix of the derivatives of f:
Version History
Introduced before R2006a
See Also
curl
| divergence
| diff
| gradient
| hessian
| laplacian
| potential
| vectorPotential
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)