Calculate Sum of Square Error

50 visualizaciones (últimos 30 días)
Muhammad
Muhammad el 28 de Oct. de 2013
Comentada: Carolyn el 12 de Dic. de 2022
% Extract Data from Excel sheet to Metrix
Metrix = xlsread('D:\data.xlsx');
% X represent annual franchise fee and Y represent start up cost ($1000) for a pizza franchise
X = Metrix(:,1);
Y = Metrix(:,2);
% as we know regression line eq is ---> y = wx+b where w is slope and b is y-intercept
SUMxy = sum(X.*Y);
SUMx = sum(X);
SUMy = sum(Y);
n = length(X);
SUMx2 = sum(X.*X);
SUMxthen2 = SUMx*SUMx;
slope_W = (((n)*(SUMxy)) - (SUMx*SUMy))/((n*SUMx2)-(SUMxthen2));
YIntercept_B = (SUMy/n)-(slope_W*(SUMx/n));
x=linspace(0,2000);
eq_y = slope_W*x+YIntercept_B;
scatter(X,Y,'*');
hold on;
plot(x,eq_y);
hold off;
as we know SSE = (y-y_bar)^2 .. but i have not a y_bar values how to i extract y_bar values in Matrix ?
  4 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 28 de Oct. de 2013
There is no y_bar in your code
Muhammad
Muhammad el 28 de Oct. de 2013
i know ! my question is this how to i calculate y_bar ?

Iniciar sesión para comentar.

Respuesta aceptada

Wayne King
Wayne King el 28 de Oct. de 2013
Editada: Wayne King el 28 de Oct. de 2013
You get the yhat values by plugging your observed X-values into the equation determined by your regression fit. You have an equation that comes from estimating the slope and the intercept.
yhat = slope*x+intercept
You have a vector of X-values, the values you used in determining the model fit in the first place. So you just plug that vector in your fitted equation and you will get a vector of yhat values equal in length to your observations, then just use the code I gave you above.
  2 comentarios
Muhammad
Muhammad el 28 de Oct. de 2013
now i understand and feeling Stupid ! Thank u for u help :)
Carolyn
Carolyn el 12 de Dic. de 2022
y_bar is basically yhat, right?

Iniciar sesión para comentar.

Más respuestas (1)

Wayne King
Wayne King el 28 de Oct. de 2013
The sum of square error in regression is the 2-norm squared of the residuals, so if yhat are your fitted values, and y are the original observations, then
r = y-yhat;
SSE = norm(r,2)^2;
  3 comentarios
Wayne King
Wayne King el 28 de Oct. de 2013
yhat are your fitted values. You have a regression equation, it's your eq_y the values of that equation are your predicted values
Muhammad
Muhammad el 28 de Oct. de 2013
i knw bro ! but how to i get these fitted values from eq_y ?

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by