How do I generate a pdf from some known percentile values
29 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Christopher Stokes
el 12 de Oct. de 2021
Comentada: Star Strider
el 13 de Oct. de 2021
Hi Matlab community,
I have percentile values that describe a distribution of possible sea level rise magnitudes. I would like to be able to generate a probability density function that closely approximates the actual distribution from which the percentile values were generated. Can anyone suggest how to achieve this please?
Example data:
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
0 comentarios
Respuesta aceptada
Star Strider
el 12 de Oct. de 2021
A slightly different approach —
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
B = fminsearch(@(b) norm(prctiles/100 - cdf('Normal',SLR,b(1),b(2))), [SLR(prctiles==50);rand])
SLRv = linspace(min(SLR), max(SLR));
yfit = cdf('Normal', SLRv, B(1), B(2));
figure
plot(SLR, prctiles/100, 'p')
hold on
plot(SLRv, yfit, '-r')
hold off
grid
title(sprintf('$p = N(%.2f, %.3f)$',B), 'Interpreter','latex')
legend('SLR','Fitted Noprmal Distribution', 'Location','NW')
Experiment to get different results.
.
6 comentarios
Más respuestas (2)
Image Analyst
el 12 de Oct. de 2021
Have you seen fitdist() in the Stats toolbox?
Of course you'd be better off with much more data.
1 comentario
Image Analyst
el 12 de Oct. de 2021
Editada: Image Analyst
el 12 de Oct. de 2021
Here's an example:
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 17;
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
% Plot data.
subplot(2, 1, 1);
bar(SLR)
grid on;
title('Original SLR Data', 'FontSize', fontSize);
xlabel('Index', 'FontSize', fontSize);
ylabel('SLR Value', 'FontSize', fontSize);
% Get distribution.
d = fitdist(SLR(:), 'Normal')
% Make curve, plot distribution.
% https://en.wikipedia.org/wiki/Normal_distribution
x = linspace(min(SLR), max(SLR), 1000);
amp = 1 / (d.sigma * sqrt(2*pi));
y = amp * exp(-(1/2) * ((x - d.mu) / d.sigma) .^ 2)
subplot(2, 1, 2);
plot(x, y, 'b-', 'LineWidth', 2);
grid on;
title('Estimated Distribution of SLR', 'FontSize', fontSize);
xlabel('SLR', 'FontSize', fontSize);
ylabel('PDF', 'FontSize', fontSize);
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/765301/image.png)
Pick the distribution that fits the theory of what the distribution should actually be. Hopefully you know this in advance. Actually you need to if you're going to model it. Otherwise just normalize your histogram and that is the actual PDF.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!