Efficient way to calculate backwards average
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Lorenzo
el 29 de Sept. de 2014
Comentada: John D'Errico
el 1 de Oct. de 2014
Dear all,
I'm looking for an efficient way to calculate a backwards moving average, i.e., giving a vector A I want to calculate a vector A2 for which the element i is equal to mean(A(i:end)).
For the moment I am doing it this way:
A=rand(1,1000);
n=length(A);
A2=zeros(1,n)
for i=1:n
A2(i)=mean(A(i:end));
end
Is there any better way?
Thanks
Lorenzo
0 comentarios
Respuesta aceptada
John D'Errico
el 29 de Sept. de 2014
Editada: John D'Errico
el 29 de Sept. de 2014
First of all, what you SAY you are doing makes no sense. A is a 1000x1000 matrix, but A2 only a vector. And you have two i for loops, with only one end. And regardless of what size A is, n=size(A) will produce a vector. So 1:n will yield a problem in the for loop.
The code you show will fail in so many ways I won't bother to count. You should provide working code so someone can know what it is you really want!
Assuming that you really wanted to write this where A is a row vector...
Think about what cumsum does. Then, suppose you flipped the data before calling cumsum.
n = length(A);
A2 = fliplr(cumsum(fliplr(A))./(1:n)));
Of course, this is really not a true moving average, since that would involve a moving window of fixed length. But it is what you asked for.
4 comentarios
John D'Errico
el 1 de Oct. de 2014
That will work fine, although a minor optimization would be to use bsxfun to do the divide instead of replicating the vector using repmat.
A2=flipud(bsxfun(@rdivide,cumsum(flipud(A)),(1:rows)'));
Más respuestas (4)
José-Luis
el 29 de Sept. de 2014
numRows = 100;
numCols = 100;
data = rand(numRows,numCols);
result = flipud(bsxfun(@rdivide,cumsum(flipud(data)),(1:numRows)));
Chad Greene
el 29 de Sept. de 2014
This is a very fast moving average calculator. It centers data, so if you use an N-point moving average, after calculating the moving averaged, you could shift by N/2 to get the "backwards" moving average.
1 comentario
Image Analyst
el 29 de Sept. de 2014
He doesn't want a moving average. His window is not constant length, but gets shorter as the index approaches the end of the array.
SK
el 29 de Sept. de 2014
Editada: SK
el 29 de Sept. de 2014
s = sum(A);
n = length(A);
A2 = (s - cumsum(A))/n;
is a little more elegant and I would think faster. But you have to add s/N to the beginning of A2 and remove the 0 at the end of A2.
The last operation (removing the zero) is misleadingly innocent:
A2(end) = [];
But you may soon get to know the consequences of it.
Lorenzo
el 30 de Sept. de 2014
Editada: Lorenzo
el 30 de Sept. de 2014
1 comentario
Stephen23
el 30 de Sept. de 2014
Unless you are actually answering your own question, write a comment to your original question or one of the answers. There is no guarantee that the answers remain in any particular order...
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!