Open to feedback for my code
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Lavorizia Vaughn
el 13 de Nov. de 2021
Comentada: Steven Lord
el 14 de Nov. de 2021
hello, everyone, the code you see below is for a specific plot. my assignment has the following question:
Run Case 1 iwith the five stepsizes h = 0.05/2^(k−1), k = 1, 2, 3, 4, and h = 0.001. Compute the value of θ2(t = 100) for each stepsize. Consider the last result the exact solution, and plot the four errors as a function of h in a loglog-plot. Estimate the order of convergence from the slope.
My report should contain the MATLAB commands used, the five values of θ2(t = 100), the loglog-plot, and the estimated slope.
Below is my code, and i was wondering if i could get some help on making it better. thank you.
th1=1;
th2=1;
w1=0;
w2=0;
hs(1)=[0.05];
hs(2)=[0.05/2];
hs(3)=[0.05/4];
hs(4)=[0.05/8];
hs(5)=[1/1000];
th2s=[]; %i feel like this could be better
for h=hs
y=[th1,th2,w1,w2];
N=100/h;
for i=1:N
k1=h*fpend(y);
k2=h*fpend(y + k1/2);
k3=h*fpend(y + k2/2);
k4=h*fpend(y + k3);
y = y + (k1 + 2*k2 + 2*k3 + k4) / 6;
end
th2s=[th2s,y(2)]; %i feel like this could be better
errors = abs(th2s(1:4) - th2s(5))
hs = hs(1:4);
loglog(hs,errors)
grid on
xlabel('Stepsize h')
ylabel('Error')
xlim([10^-3 10^-1])
ylim([10^-10 10^-5])
polyfit(log(hs), log(errors), 1)
1 comentario
Jan
el 13 de Nov. de 2021
See your other question: https://www.mathworks.com/matlabcentral/answers/1585584-help-with-a-loop-that-computes-at-each-step
It was a waste of time to post my answer there, if you have the above solution already.
You do not mean "h = 0.05/2(k−1)" but "h = 0.05 / 2^(k−1)".
Respuesta aceptada
Jan
el 13 de Nov. de 2021
[] is Matlab's operator for a concatenation. [0.05] concatenates the numnbre 0.05 with nothing, therefore this is a waste of time only. Nicer:
hs = [0.05, 0.05/2, 0.05/4, 0.05/8, 1/1000];
The outer loop is not closed by an end.
You do not only feel that "th2s=[th2s,y(2)];" is not optimal, but the editor displays a corresponding hint already: Do not let arrays grow iteratively. With a pre-allocation:
th1 = 1;
th2 = 1;
w1 = 0;
w2 = 0;
hs = [0.05, 0.05/2, 0.05/4, 0.05/8, 1/1000];
th2s = nan(size(hs));
for k = 1:numel(hs)
h = hs(k);
y = [th1,th2,w1,w2];
N = 100 / h;
for i = 1:N
k1 = h * fpend(y);
k2 = h * fpend(y + k1/2);
k3 = h * fpend(y + k2/2);
k4 = h * fpend(y + k3);
y = y + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
end
th2s(k) = y(2);
end
errors = abs(th2s(1:4) - th2s(5))
hs = hs(1:4);
loglog(hs, errors)
grid on
xlabel('Stepsize h')
ylabel('Error')
xlim([1e-3, 1e-1])
ylim([1e-10, 1e-5])
polyfit(log(hs), log(errors), 1)
The run time does not matter in your case, but keep in mind that 10^-3 is an expensive poweroperation while 1e-3 is a cheap constant. This matters, if you call the code thousands of times.
Prefer spaces around the operators and separators between elements of vectors. This is less ambiguous:
a = [0 - 1i]
b = [0 -1i]
c = [0, -1i]
d = 2.*.2 % ???
2 comentarios
Steven Lord
el 14 de Nov. de 2021
d = 2.*.2 % ???
In this case this would be written more clearly with the addition of one character. That extra character doesn't change its meaning but does make it easier for humans to parse.
d = 2.*0.2 % !
Más respuestas (1)
Image Analyst
el 13 de Nov. de 2021
Editada: Image Analyst
el 13 de Nov. de 2021
Y can be brought outside of the loop.
Here's a vectorized way to compute hs. Also note that for k = 1, (k-1) is zero, so hs is zero.
k = 1 : 4;
hs = (0.05 / 2) * (k-1);
hs(end+1) = 0.001
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!