How to plot probability density curve?

19 visualizaciones (últimos 30 días)
Andi
Andi el 8 de Dic. de 2021
Comentada: Andi el 30 de Mzo. de 2022
I have modify the strip as per my data but its the resulst are not expected. Why the movemedian=25 is fixed here.
X = readmatrix('R_0.01.csv');
r_a=[X(1,:)];
r_b=[X(2,:)];
r_c=[X(3,:)];
r_d=[X(4:8,:)];
r_e=[X(9:12,:)];
r_f=[X(13:16,:)];
r_g=[X(17:26,:)];
r_h=[X(27:48,:)];
r_i=[X(49:120,:)];
r_j=[X(121:186,:)];
r_aam = (r_a(~isnan(r_a)));
r_abm = r_b(~isnan(r_b));
r_acm = r_c(~isnan(r_c));
r_adm = r_d(~isnan(r_d));
r_aem = r_e(~isnan(r_e));
r_afm = r_f(~isnan(r_f));
r_agm = r_g(~isnan(r_g));
r_ahm = r_h(~isnan(r_h));
r_aim = r_i(~isnan(r_i));
r_ajm= r_j(~isnan(r_j));
pd = makedist('Normal')
[f1,x1,flo1,fup1] = ecdf(r_aam);
[f2,x2,flo2,fup2] = ecdf(r_abm);
[f3,x3,flo3,fup3] = ecdf(r_acm);
[f4,x4,flo4,fup4] = ecdf(r_adm);
[f5,x5,flo5,fup5] = ecdf(r_aem);
[f6,x6,flo6,fup6] = ecdf(r_afm);
[f7,x7,flo7,fup7] = ecdf(r_agm);
[f8,x8,flo8,fup8] = ecdf(r_ahm);
[f9,x9,flo9,fup9] = ecdf(r_aim);
[f10,x10,flo10,fup10] = ecdf(r_ajm);
figure
plot(x, f)
grid
title('Empirical CDF')
dfdxs1 = smoothdata(gradient(f1)./gradient(x1), 'movmedian',25);
dfdxs2 = smoothdata(gradient(f2)./gradient(x2), 'movmedian',20);
dfdxs3 = smoothdata(gradient(f3)./gradient(x3), 'movmedian',25);
dfdxs4 = smoothdata(gradient(f4)./gradient(x4), 'movmedian',25);
dfdxs5 = smoothdata(gradient(f5)./gradient(x5), 'movmedian',25);
dfdxs6 = smoothdata(gradient(f6)./gradient(x6), 'movmedian',25);
dfdxs7 = smoothdata(gradient(f7)./gradient(x7), 'movmedian',25);
dfdxs8 = smoothdata(gradient(f8)./gradient(x8), 'movmedian',25);
dfdxs9 = smoothdata(gradient(f9)./gradient(x9), 'movmedian',25);
dfdxs10 = smoothdata(gradient(f10)./gradient(x10), 'movmedian',1000);
aaa1=smooth(dfdxs1)
aaa2=smooth(dfdxs2)
aaa3=smooth(dfdxs3)
aaa4=smooth(dfdxs4)
aaa5=smooth(dfdxs5)
aaa6=smooth(dfdxs6)
aaa7=smooth(dfdxs7)
aaa8=smooth(dfdxs8)
aaa9=smooth(dfdxs9)
aaa10=smooth(dfdxs10)
figure
plot(x1, aaa1)
plot(x2, aaa2)
plot(x3, aaa3)
plot(x4, aaa4)
plot(x5, aaa5)
plot(x6, aaa6)
plot(x7, aaa7)
plot(x8, aaa8)
plot(x9, aaa9)
plot(x10, aaa10)

Respuesta aceptada

Star Strider
Star Strider el 8 de Dic. de 2021
For data with an unknown distribution, I generally use the empirical cumulative distribution (ecdf) function to get the CDF, and the use the gradient function to derive the PDF. This is generally more robust than estimating the PDF directly, at least in my experience.
.
  10 comentarios
Torsten
Torsten el 30 de Mzo. de 2022
Editada: Torsten el 30 de Mzo. de 2022
Use MATLAB's "ksdensity".
Andi
Andi el 30 de Mzo. de 2022
I try with the ksdensity but results are not expected.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by