how to run principal component analysis in a 3D matrix

25 visualizaciones (últimos 30 días)
Hugo
Hugo el 21 de Feb. de 2022
Respondida: Image Analyst el 22 de Feb. de 2022
Hi,
I am trying to run principal component analysis, pca() function to a 3D matrix. It does not work and I think it only works with 2D matrixes. Is there any way to circunvent this limitation?
Thank you,
Best regards,

Respuesta aceptada

AndresVar
AndresVar el 21 de Feb. de 2022
Editada: AndresVar el 21 de Feb. de 2022
You can reshape the matrix to 2D and then when you get results convert it back to the orginal dimensions if needed
There tricky part is to choose how to reshape. But say 2 dimensions are data, and the third is time then
data3d = ones([2,2,3]);
data2d = reshape(data3d,[],size(data3d,3));
size(data2d)
ans = 1×2
4 3
so the columns become the new time dimension.

Más respuestas (1)

Image Analyst
Image Analyst el 22 de Feb. de 2022
See my attached demo where I run it on a 3-D (true color) image. Adapt as needed.

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by