How to plot a best fit curve to my data points?

13 visualizaciones (últimos 30 días)
Nisar Ahmed
Nisar Ahmed el 2 de Jun. de 2022
Comentada: Sam Chak el 3 de Jun. de 2022
Hi,
I have attached a data (inverted_qp.mat Inv_qpAVO freq;) and a plot between fre and Inv_qpAVO is shown below in red color.
circled points on left hand side are the issue and I want to a best-fit curves passes through these points just like shown on the right hand side figure (in blue color a solid line).
The best fit curve should start from the fist point to the end point as given a solid blue line. Thanks
  7 comentarios
John D'Errico
John D'Errico el 3 de Jun. de 2022
Editada: John D'Errico el 3 de Jun. de 2022
@Nisar Ahmed Please stop using a new answer every time you want to make a comment.
Sam Chak
Sam Chak el 3 de Jun. de 2022
@Image Analyst, thanks for the insights into the analysis of the data that provides a basis for understanding the curve fitting. 👍

Iniciar sesión para comentar.

Respuestas (2)

Kevin Holly
Kevin Holly el 2 de Jun. de 2022
If you have the Curve Fitting Toolbox, you can use the Curve Fitting app after you import your data into the workspace. Within the app, there are many curve fits you could select from. Here is a video showing the process.

Nisar Ahmed
Nisar Ahmed el 3 de Jun. de 2022
@Alex Sha thank you for you answer,
I am sorry I did not understand, do you mean, I need to compute
f(x) = p1 + p2.*x + p3*x.^1.5 + p4.*log(x) + p5.*exp(p6.*x)
while using
p1 = -0.137921750658333;
p2 = 4.83156544429652E-5;
p3 = -3.87422699831525E-7;
p4 = 0.000904269701487609;
p5 = 0.138139976684668;
p6 = -0.000327312583052385;
and x = Inv_qpAVO;
I am trying as I wrote above and having this error
Array indices must be positive integers or logical values.
Error in InQP_f (line 29)
f(x) = p1 + p2.*x + p3*x.^1.5 + p4.*log(x) + p5.*exp(p6.*x)
  1 comentario
Torsten
Torsten el 3 de Jun. de 2022
Editada: Torsten el 3 de Jun. de 2022
p(1) = -0.137921750658333;
p(2) = 4.83156544429652E-5;
p(3) = -3.87422699831525E-7;
p(4) = 0.000904269701487609;
p(5) = 0.138139976684668;
p(6) = -0.000327312583052385;
f = @(x)p(1) + p(2)*x + p(3)*x.^1.5 + p(4).*log(x) + p(5).*exp(p(6).*x);
plot(x,f(x))

Iniciar sesión para comentar.

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by