how can i separate each color into a single image?

2 visualizaciones (últimos 30 días)
Walaa
Walaa el 6 de Nov. de 2022
Comentada: Walaa el 6 de Nov. de 2022
I used imsegK-means and superpixel for color classification . How can I separate each cluster into a single image ?
%superpixels and imsegk-means function for color classificatsion
%show the original colored image
subplot(2, 2, 1);
imshow(rgbImage);
title('Original Color Image', 'FontSize', 10);
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]);
% Give a name to the title bar.
set(gcf,'name','Retinal Image Classification with Color Features and Superpixels','numbertitle','off')
%-----------------------------------------------------------------------------------------------------------------
%Convert the image to the L*a*b* color space.
Alab = rgb2lab(rgbFixed);
%Calculate superpixels of the image.
[L,N] = superpixels(Alab,10000,'isInputLab',true);
BW = boundarymask(L);
subplot(2,2,2)
imshow(imoverlay(InputImage,BW,'blue'));
title('Overlay of boundary mask over the original image');
%Create a cell array of the set of pixels in each region.
pixelIdxList = label2idx(L);
%Determine the median color of each superpixel region in the L*a*b* color space.
[m,n] = size(L);
meanColor = zeros(m,n,3,'single');
for i = 1:N
meanColor(pixelIdxList{i}) = mean(Alab(pixelIdxList{i}));
meanColor(pixelIdxList{i}+m*n) = mean(Alab(pixelIdxList{i}+m*n));
meanColor(pixelIdxList{i}+2*m*n) = mean(Alab(pixelIdxList{i}+2*m*n));
end
%Cluster the color feature of each superpixel by using the imsegkmeans function.
numColors = 5;
[Lout,cmap] = imsegkmeans(meanColor,numColors,'numAttempts',10);
cmap = lab2rgb(cmap);
subplot(2,2,3);
imshow(label2rgb(Lout));
title('Clustering of colors using imsegkmeans function');
%Use cluster centers as the colormap for a thematic map.
subplot(2,2,4)
imshow(double(Lout),cmap)
title('Thematic map')

Respuesta aceptada

Image Analyst
Image Analyst el 6 de Nov. de 2022
Perhaps you mean something more like this:
% Demo by Image Analyst
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 22;
markerSize = 40;
rgbImage = imread('peppers.png');
%superpixels and imsegk-means function for color classificatsion
%show the original colored image
subplot(2, 2, 1);
imshow(rgbImage);
title('Original Color Image', 'FontSize', 10);
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]);
% Give a name to the title bar.
set(gcf,'name','Retinal Image Classification with Color Features and Superpixels','numbertitle','off')
%-----------------------------------------------------------------------------------------------------------------
%Convert the image to the L*a*b* color space.
Alab = rgb2lab(rgbImage);
%Calculate superpixels of the image.
[L,N] = superpixels(Alab,10000,'isInputLab',true);
BW = boundarymask(L);
subplot(2,2,2)
imshow(imoverlay(rgbImage,BW,'blue'));
title('Overlay of boundary mask over the original image');
%Create a cell array of the set of pixels in each region.
pixelIdxList = label2idx(L);
%Determine the median color of each superpixel region in the L*a*b* color space.
[m,n] = size(L);
meanColor = zeros(m,n,3,'single');
for i = 1:N
meanColor(pixelIdxList{i}) = mean(Alab(pixelIdxList{i}));
meanColor(pixelIdxList{i}+m*n) = mean(Alab(pixelIdxList{i}+m*n));
meanColor(pixelIdxList{i}+2*m*n) = mean(Alab(pixelIdxList{i}+2*m*n));
end
%Cluster the color feature of each superpixel by using the imsegkmeans function.
numColors = 5;
[Lout,cmap] = imsegkmeans(meanColor,numColors,'numAttempts',10);
cmap = lab2rgb(cmap);
subplot(2,2,3);
imshow(label2rgb(Lout));
title('Clustering of colors using imsegkmeans function');
%Use cluster centers as the colormap for a thematic map.
subplot(2,2,4)
imshow(double(Lout),cmap)
title('Thematic map')
  3 comentarios
Image Analyst
Image Analyst el 6 de Nov. de 2022
Did you look at Lout? Just add this code to show each class:
for k = 1 : max(Lout(:))
figure
imshow(Lout == k);
caption = sprintf('Class #%d', k);
title(caption)
end
Walaa
Walaa el 6 de Nov. de 2022
Thank you so much

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by