How to do PCA in Matlab?

1 visualización (últimos 30 días)
Azzam Albalawi
Azzam Albalawi el 16 de Dic. de 2022
Editada: Bora Eryilmaz el 16 de Dic. de 2022
I have a dataset matrix that have 41 columns, and more than 20000 Rows
I filled the missing data and did a normalization
Now, I want to do Princple Component Analysis (PCA)
How to do that using code?
Name of my table = Table_NormalizedData
Here is a screenshot of my matrix table:

Respuestas (1)

Bora Eryilmaz
Bora Eryilmaz el 16 de Dic. de 2022
Editada: Bora Eryilmaz el 16 de Dic. de 2022
You can use the pca command from the Statistics and Machine Learning Toolbox: https://www.mathworks.com/help/stats/pca.html.
T = array2table(rand(20000,41))
T = 20000×41 table
Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14 Var15 Var16 Var17 Var18 Var19 Var20 Var21 Var22 Var23 Var24 Var25 Var26 Var27 Var28 Var29 Var30 Var31 Var32 Var33 Var34 Var35 Var36 Var37 Var38 Var39 Var40 Var41 _________ _________ _______ ________ ________ ________ ________ _________ ________ ________ ________ _________ _________ ________ _______ _________ ________ ________ _______ _________ _________ _______ ________ _______ ________ _______ _________ _________ ________ _________ ________ ________ ________ ________ _______ ________ ________ _______ ________ _________ _________ 0.38416 0.46814 0.87309 0.45829 0.33026 0.98582 0.48881 0.062492 0.96585 0.13826 0.78959 0.20559 0.23665 0.63369 0.82389 0.7957 0.043837 0.91585 0.60099 0.033945 0.54813 0.19793 0.37993 0.55047 0.82208 0.47179 0.92622 0.0061983 0.63814 0.37252 0.99886 0.94423 0.16757 0.89991 0.29021 0.043358 0.54493 0.75294 0.18184 0.71799 0.88457 0.83871 0.11276 0.56082 0.96556 0.97927 0.5758 0.2135 0.9019 0.34414 0.34004 0.021267 0.88241 0.38142 0.017323 0.94989 0.11383 0.67009 0.46741 0.20991 0.3381 0.0046146 0.38117 0.099593 0.18798 0.72397 0.22154 0.14362 0.83161 0.95244 0.59838 0.028459 0.82778 0.85666 0.78395 0.66509 0.45053 0.26878 0.09059 0.06531 0.44458 0.0091807 0.0046692 0.6118 0.31559 0.56953 0.85507 0.98538 0.78012 0.82511 0.069297 0.2566 0.45109 0.096235 0.39586 0.45701 0.64023 0.82588 0.91721 0.4807 0.59957 0.96882 0.653 0.72887 0.23359 0.69407 0.34559 0.83522 0.54662 0.44016 0.10475 0.79081 0.7842 0.44975 0.66312 0.76467 0.50161 0.28025 0.16167 0.18954 0.43389 0.49572 0.8612 0.77143 0.81391 0.1257 0.72247 0.60021 0.32851 0.22894 0.64305 0.542 0.66037 0.90124 0.0050064 0.67844 0.7584 0.40169 0.26364 0.37288 0.73261 0.90239 0.33605 0.22375 0.72078 0.20199 0.21661 0.29866 0.2261 0.16715 0.86783 0.48008 0.72816 0.61338 0.099521 0.72983 0.94208 0.27543 0.68768 0.19991 0.93599 0.54932 0.80563 0.30282 0.19673 0.80081 0.65692 0.52834 0.056651 0.096506 0.83038 0.53809 0.021146 0.015725 0.60577 0.11406 0.51797 0.44673 0.41392 0.0062069 0.078288 0.1624 0.55508 0.13369 0.21658 0.28003 0.67247 0.325 0.48714 0.56254 0.55132 0.99731 0.7093 0.45559 0.057603 0.51667 0.067292 0.64522 0.24759 0.98839 0.081332 0.60102 0.24589 0.74356 0.22353 0.89114 0.80076 0.80172 0.96953 0.58769 0.70613 0.39428 0.99161 0.029939 0.44598 0.91256 0.24584 0.32695 0.011469 0.81727 0.52828 0.019662 0.30459 0.42915 0.60743 0.74146 0.69714 0.79243 0.17877 0.015239 0.17493 0.78955 0.53142 0.97518 0.42674 0.94027 0.62371 0.74666 0.086662 0.86146 0.48069 0.92569 0.32957 0.062024 0.959 0.17538 0.77617 0.60892 0.43406 0.33864 0.15187 0.76837 0.18892 0.97951 0.72911 0.17261 0.14528 0.12033 0.0018481 0.18596 0.535 0.58012 0.58099 0.70183 0.11846 0.28326 0.98286 0.12072 0.092442 0.48001 0.23714 0.75134 0.41548 0.35933 0.16363 0.8587 0.6216 0.63099 0.83904 0.49574 0.1557 0.53832 0.78299 0.81834 0.45615 0.070929 0.22641 0.069591 0.0064462 0.86872 0.84271 0.024789 0.38517 0.51589 0.45708 0.93027 0.95481 0.12865 0.85434 0.84645 0.087203 0.31999 0.49906 0.18965 0.57975 0.20078 0.56798 0.83235 0.37747 0.27762 0.28828 0.32338 0.52661 0.53632 0.16047 0.84183 0.092499 0.3285 0.28708 0.27491 0.22041 0.26932 0.74073 0.57385 0.19292 0.25293 0.57775 0.48687 0.89298 0.62736 0.90365 0.12921 0.046703 0.27243 0.3194 0.86821 0.17483 0.057312 0.88576 0.42395 0.33684 0.75401 0.5044 0.18818 0.7818 0.25803 0.7878 0.29708 0.78069 0.5556 0.20781 0.59136 0.055916 0.45985 0.84248 0.86157 0.065862 0.47249 0.37484 0.63834 0.7149 0.93123 0.47109 0.84949 0.35532 0.95604 0.50426 0.40878 0.82596 0.93418 0.15285 0.85421 0.98914 0.94636 0.5298 0.52746 0.25999 0.022405 0.19263 0.49469 0.11847 0.30887 0.65505 0.83838 0.59475 0.58786 0.20523 0.50018 0.64248 0.93706 0.45901 0.8393 0.75381 0.8338 0.93614 0.18823 0.056457 0.51371 0.0019686 0.91557 0.46151 0.57148 0.78074 0.53702 0.38732 0.57909 0.39298 0.21208 0.22933 0.093916 0.88311 0.60745 0.31345 0.065877 0.84938 0.15696 0.88627 0.0015795 0.7399 0.57777 0.34905 0.27568 0.22115 0.14696 0.68037 0.1447 0.2049 0.79835 0.88068 0.81098 0.031597 0.4876 0.41923 0.78146 0.90747 0.30881 0.31354 0.7887 0.19052 0.69066 0.47994 0.12855 0.13935 0.67278 0.94912 0.62195 0.58259 0.96799 0.74555 0.0016659 0.57407 0.22453 0.95441 0.78587 0.82014 0.60444 0.79622 0.014834 0.3671 0.022861 0.69377 0.46162 0.22055 0.69922 0.68179 0.69525 0.27527 0.57614 0.85046 0.97855 0.8328 0.15471 0.9345 0.5369 0.66256 0.59952 0.83088 0.38578 0.71038 0.50304 0.17679 0.12485 0.28754 0.099526 0.23065 0.63254 0.83074 0.62855 0.78314 0.70424 0.58269 0.31291 0.89109 0.91001 0.85728 0.21099 0.8596 0.92591 0.805 0.20982 0.8664 0.8074 0.093959 0.24557 0.1033 0.72167 0.14501 0.64165 0.36657 0.31934 0.47629 0.48929 0.26789 0.51241 0.36635 0.62107 0.91977 0.70711 0.70791 0.16814 0.056005 0.16085 0.51575 0.93326 0.92584 0.61757 0.13269 0.9081 0.35696 0.14917 0.62182 0.934 0.36945 0.27113 0.70142 0.25362 0.42821 0.7577 0.41091 0.46868 0.028246 0.3722 0.90033 0.52889 0.38674 0.89082 0.83263 0.99702 0.91392 0.56069 0.84359 0.6934 0.0046519 0.43553 0.20929 0.65434 0.93901 0.25228 0.44826 0.41519 0.41517 0.25053 0.72032 0.85214 0.72463 0.87901 0.23503 0.63742 0.53657 0.5701 0.88097 0.80169 0.91903 0.057044 0.1161 0.67916 0.39639 0.08523 0.12131 0.35503 0.91562 0.20351 0.28906 0.14334 0.80087 0.12094 0.24678 0.046195 0.8066 0.20678 0.23411 0.41267 0.5467 0.57043 0.50794 0.94389 0.53362 0.42199 0.03179 0.60276 0.0037274 0.32971 0.96189 0.61239 0.53381 0.44418 0.83971 0.58988 0.62308 0.98735 0.78014 0.42686 0.78667 0.6504 0.77612 0.75136 0.23444 0.72139 0.69336 0.42869 0.98939 0.37035 0.19304 0.14386 0.51822 0.84731 0.91156 0.43541 0.15468 0.44345 0.53608 0.18398 0.019407 0.1784 0.85875 0.87811 0.63632 0.48474 0.59382 0.039991 0.73989 0.70544 0.32871 0.95405 0.26419 0.37698 0.4229 0.25531 0.95589 0.83484 0.65568 0.19961 0.64735 0.22036 0.5147 0.20577
coeff = pca(T{:,:})
coeff = 41×41
-0.0357 0.2674 0.2301 -0.1900 -0.0227 0.0237 0.1584 0.1163 -0.1411 0.1635 0.0407 -0.0939 -0.1185 -0.0269 -0.1573 0.0147 -0.1444 0.2633 0.1307 -0.1867 0.0509 -0.1144 0.1071 0.1114 0.1036 0.0818 0.1087 -0.2080 0.3774 -0.1640 -0.1333 0.1787 0.0465 0.2770 -0.0431 -0.2007 -0.2239 -0.1038 -0.2469 -0.1338 0.1635 0.3922 0.0882 0.0924 -0.1721 -0.0530 0.0369 0.1923 -0.0265 0.0476 -0.1767 -0.0716 -0.0413 0.0077 -0.0891 0.1275 0.0956 0.0260 -0.0506 -0.1415 0.3377 0.0371 -0.1758 0.0352 -0.0343 0.0525 -0.1486 0.2370 -0.0647 0.2722 0.1211 0.0104 -0.0488 0.0831 -0.2050 0.0899 0.1638 -0.2072 -0.0779 0.1304 -0.0335 -0.1995 -0.0230 0.2286 0.0634 0.1028 0.0344 0.1861 0.2295 0.0255 -0.1516 0.1394 0.1851 -0.0810 -0.2503 0.1513 0.0681 -0.0201 -0.1547 0.0699 -0.0015 -0.1785 -0.0422 0.1691 0.1659 -0.2144 -0.1374 -0.1032 -0.2215 0.1510 -0.2114 -0.0368 0.2064 -0.0595 -0.2075 -0.0626 -0.0325 -0.1306 -0.1525 0.0258 0.0588 0.0994 0.2498 -0.0316 -0.2423 0.0201 0.0694 0.0598 0.3343 -0.1194 -0.0704 -0.1325 0.0915 -0.2571 0.2181 0.0386 0.2315 -0.0362 0.0633 0.0518 0.0038 0.0366 0.2753 0.1337 -0.1039 0.0602 0.2260 -0.0267 -0.1483 -0.0477 0.1997 0.0964 0.0970 -0.1534 0.2886 0.0426 0.0879 0.1581 0.0309 -0.1306 -0.0663 0.1168 0.1152 -0.0677 0.1120 0.1177 0.0372 0.0037 -0.0019 0.1641 -0.0217 0.0674 -0.1692 0.1490 -0.1182 -0.2366 0.1397 -0.2594 0.2774 -0.0168 -0.1563 0.0120 0.2324 0.0722 -0.1012 0.2904 -0.0250 0.0222 0.0762 -0.0188 0.4001 -0.0723 0.1153 -0.1459 -0.2171 0.1148 -0.2568 -0.2806 0.1591 0.1648 -0.0219 0.0514 -0.0285 -0.1554 0.1555 0.1322 -0.0731 -0.0303 0.0736 -0.0458 0.1039 0.4117 -0.0790 0.0500 0.2439 0.1363 0.0704 0.0583 0.0606 -0.0827 0.1123 -0.1189 0.2001 0.0105 -0.1622 -0.2120 0.0437 -0.1939 -0.1262 0.0860 -0.1317 0.2494 -0.1071 0.1798 -0.0291 -0.2030 -0.1879 -0.1767 -0.0188 0.0513 -0.1354 -0.2440 0.2110 -0.0198 0.0836 0.1335 -0.0241 -0.1913 -0.0798 -0.0413 -0.0007 -0.0032 -0.1201 -0.1313 -0.1094 0.4902 0.1602 -0.2259 -0.2614 -0.0631 0.0469 -0.1331 0.0047 0.3878 -0.0830 0.0603 0.0241 -0.0494 0.0025 0.1585 -0.0884 -0.1332 0.3621 0.1985 0.1289 -0.0451 -0.0231 0.0855 0.0414 0.0523 -0.1804 -0.2310 0.1553 -0.0929 0.0508 -0.0830 0.1332 0.3819 -0.1160 0.2409 -0.1137 0.0250 -0.1922 0.1148 0.3433 0.0318 -0.2088 0.1965 0.0947 -0.1282

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by