Problem: Image segmentation of forest area using CNN and MATLAB's BLOCKPROC function.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hello everyone, how are you?
I trained a Convolutional Neural Network - CNN (Resnet-18) to separate two classes (Palms / Non-Palms [background]) from a forest area.
Now, I need to generate the segmentation of the area from the trained network's result using the command:
C = semanticseg(I, network);
However, with the image being too large (21800x38480x3 uint8), the result shows the following error: "Maximum variable size allowed on the device is exceeded." Therefore, I decided to use a resource suggested by the Matlab website itself, which is to use the command BLOCKPROC, which processes the image in parts, which apparently would solve this problem of processing large images. So, I used the following commands:
I = imread('imagem.tif');
fun = @(block_struct) semanticseg(block_struct.data, network);
C = blockproc(I,[1000 1000],fun);
The result shows the following errors:
"Error using blockprocInMemory Invalid output class. The user function, FUN, returned an invalid result. The class of the result was categorical.
Error in blockproc (line 251) result_image = blockprocInMemory(source,fun,options);"
I didn't understand, as the result shouldn't be of the categorical class. I tried to modify the function to:
fun = @(block_struct) uint8(semanticseg(block_struct.data, net));
without success! :-(
Could someone please help me?
===================================================================================================
Information about my Computer:
===================================================================================================
Processor 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz Installed RAM 32.0 GB (usable: 31.7 GB) System type 64-bit operating system, x64-based processor
===================================================================================================
Information about my Graphics Card:
===================================================================================================
CUDADevice with properties:
Name: 'NVIDIA GeForce RTX 3070 Ti Laptop GPU'
Index: 1
ComputeCapability: '8.6'
SupportsDouble: 1
DriverVersion: 12
ToolkitVersion: 11.2000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152 (49.15 KB)
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 8589410304 (8.59 GB)
AvailableMemory: 6583049776 (6.58 GB)
MultiprocessorCount: 46
ClockRateKHz: 1485000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceAvailable: 1
DeviceSelected: 1
3 comentarios
Image Analyst
el 1 de Mayo de 2023
Did you train your network with 1000*1000 images? It must match the blockproc tile size.
Respuestas (1)
Joss Knight
el 1 de Mayo de 2023
Converting to uint8 would normally work, but not if the input image isn't uint8. To be sure try cast(...,'like',...), so:
proto = I([]); % Reduce to simple prototype to avoid memory issues
fun = @(block_struct) cast(semanticseg(block_struct.data, net), 'like', proto);
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!