how to get one shape out of multiple shapes
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Asliddin Komilov
el 13 de Dic. de 2023
Comentada: Asliddin Komilov
el 22 de Dic. de 2023
Hi,
I have multiple shapes I need to merge into a single shape, because I have sets of shapes those I have to merge and compare with each other (put into a one plot).
the set of data is attached and I can plot it like this:
plot(X(:, [1:end 1])', Y(:, [1:end 1])')
let me know, if you know how to do it, thanks.
I got this shape using patch, but it generated a Patch file that I cannot use.
Ideally, I would like my data was interpolated so the final shape will not have sharp edges but be smooth and go down to Y=0.
Help me handle that too if you can. thanks
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1567734/image.png)
1 comentario
Dyuman Joshi
el 13 de Dic. de 2023
"I got this shape using patch, but it generated a Patch file that I cannot use."
You can't use the patch object or you can't use the output generated?
What is the expected output? It will be helpful if you can show an illustration.
Respuesta aceptada
DGM
el 13 de Dic. de 2023
patch() doesn't create a file. If you created a file somehow, nobody knows how you did it.
I'm not sure where this is going, but here's a guess.
% loads X,Y
load data.mat
% get rid of NaNs
xhasnans = any(isnan(X),2);
yhasnans = any(isnan(Y),2);
goodrows = ~(xhasnans | yhasnans);
X = X(goodrows,:);
Y = Y(goodrows,:);
% find convex hull
K = convhull(double(X),double(Y));
Xh = X(K);
Yh = Y(K);
% plot the convex hull, show the curve endpoint
plot(Xh,Yh); hold on
plot(X(1),Yh(1),'o')
% get rid of the base of the curve
Xh = Xh(3:end-1);
Yh = Yh(3:end-1);
% extrapolate to Y=0 from last 10 datapoints
Np = 10; % number of points to use
% the right-hand part of the curve
Yhr = Yh(1:Np);
Xhr = Xh(1:Np);
Yexr = [0;Yhr];
Xexr = interp1(Yhr,Xhr,Yexr,'linear','extrap');
% the left-hand part of the curve
Yhl = Yh(end-Np+1:end);
Xhl = Xh(end-Np+1:end);
Yexl = [Yhl;0];
Xexl = interp1(Yhl,Xhl,Yexl,'linear','extrap');
% put them back together
Xex = [Xexr; Xh(Np+1:end-Np); Xexl];
Yex = [Yexr; Yh(Np+1:end-Np); Yexl];
% close the curve (if needed
Xex = Xex([1:end 1]);
Yex = Yex([1:end 1]);
% plot the extraploated curve, show the endpoint
plot(Xex,Yex,'--')
plot(Xex(1),Yex(1),'*')
3 comentarios
DGM
el 14 de Dic. de 2023
I wouldn't call it a guess. I picked it manually based on the given hull. For a different set of polygons, I don't know that it would be consistently correct.
Más respuestas (2)
Mathieu NOE
el 13 de Dic. de 2023
hello
try this
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1568324/image.png)
x = double(X(:));
y = double(Y(:));
% remove nan
id = isnan(x) & isnan(y);
x(id) = [];
y(id) = [];
% k = boundary(___,s) specifies shrink factor s using any of the previous syntaxes.
% s is a scalar between 0 and 1. Setting s to 0 gives the convex hull,
% and setting s to 1 gives a compact boundary that envelops the points.
% The default shrink factor is 0.5.
s = 0.1;
k = boundary(x,y,s);
x_out = x(k);
y_out = y(k);
% find lower left "corner" point to make extrapolation towards Y = 0
[mx,ix1] = min(x_out);
my = y_out(ix1);
ind = find(x_out<(mx+1));
slope = mean(diff(y_out(ind))./diff(x_out(ind)));
x_lower_left = mx - my/slope;
% find lower right "corner" point to make extrapolation towards Y = 0
[mx,ix2] = max(x_out);
my = y_out(ix2);
ind = find(x_out>(mx-1));
slope = mean(diff(y_out(ind))./diff(x_out(ind)));
x_lower_right = mx - my/slope;
% add those two new points to x_out and y_out
x_out2 = [x_out(1:ix2-1); x_lower_right; x_out(ix2:ix1); x_lower_left; x_out(ix1+1:end) ] ;
y_out2 = [y_out(1:ix2-1); 0 ; y_out(ix2:ix1); 0 ; y_out(ix1+1:end) ] ;
plot(x,y, '*', x_out, y_out, '-*r', x_out2, y_out2, '-g')
0 comentarios
Ver también
Categorías
Más información sobre Graphics Performance en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!