Algorythm for Average of excel data
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
SATYA PAL
el 15 de Feb. de 2024
Dear Sir please suggest .. How can I get average of my attached data in excel at an interval of every 5 datas. like at time interval 0-0.5 sec then 0.6-1 sec, 1-1.5 sec and so on....
1 comentario
Jon
el 21 de Feb. de 2024
Editada: Jon
el 23 de Feb. de 2024
You have a lot of what look like helpful answers to your question. Unless, there is something that has not been addressed in these answers, it would be good for you to now select one of them as the answer. This will allow the question to be marked as answered so that others will know that an answer is available.
Respuesta aceptada
Dyuman Joshi
el 15 de Feb. de 2024
Editada: Dyuman Joshi
el 15 de Feb. de 2024
data = readtable('S1IA.csv')
%define bins to distribute bins in
idx = 0:0.5:0.5*ceil(max(data.Time)/0.5);
%Get the mean of the rest of the columns for the specified bins
out = groupsummary(data, 1, idx, @mean, 'IncludedEdge', 'right')
3 comentarios
Más respuestas (4)
Jon
el 15 de Feb. de 2024
Editada: Jon
el 15 de Feb. de 2024
If you have the Statistics and Machine learning toolbox you could do it like this
% Parameters
grpIncr = 0.5 % time increment for group averages
% Read the data into a matrix
dat = readmatrix('S1IA.csv')
% Provide grouping variable that makes elements within a specified sampling
% interval have the same group value
grp = floor(dat(:,1)/0.5);
[dat grp]
% Calculate mean of each group
stats = grpstats(dat(:,2:3),grp)
3 comentarios
Voss
el 15 de Feb. de 2024
Maybe something like this:
filename = 'S1IA.csv';
T = readtable(filename);
T.Time = seconds(T.Time);
T = table2timetable(T,'RowTimes','Time');
new_t = T.Time(1):seconds(0.5):T.Time(end);
T = retime(T,new_t,'mean')
0 comentarios
Mathieu NOE
el 15 de Feb. de 2024
hello again
well, this is quite the same as my answer to your other post
adapted to your new data file , this becomes :
data = readmatrix('S1IA.csv'); % Time,A,B
t = data(:,1);
dt = mean(diff(t));
%% home made solution (you choose the amount of overlap)
buffer_size = round(0.5/dt); % how many samples for 0.5 seconds buffer ?
overlap = 0; % overlap expressed in samples
%%%% main loop %%%%
[new_time,data_out] = my_movmean(t,data(:,2:3),buffer_size,overlap);
figure(2),
plot(t,data(:,2),new_time,data_out(:,1),'*-r');
title('A');
legend('raw data','0.5s mean');
xlabel('Time(s)');
figure(3),
plot(t,data(:,3),new_time,data_out(:,2),'*-r');
title('B');
legend('raw data','0.5s mean');
xlabel('Time(s)');
%%%%%%%%%% my functions %%%%%%%%%%%%%%
function [new_time,data_out] = my_movmean(t,data_in,buffer_size,overlap)
% NB : buffer size and overlap are integer numbers (samples)
% data (in , out) are 1D arrays (vectors)
shift = buffer_size-overlap; % nb of samples between 2 contiguous buffers
[samples,~] = size(data_in);
nb_of_loops = fix((samples-buffer_size)/shift +1);
for k=1:nb_of_loops
start_index = 1+(k-1)*shift;
stop_index = min(start_index+ buffer_size-1,samples);
x_index(k) = round((start_index+stop_index)/2);
data_out(k,:) = mean(data_in(start_index:stop_index,:),1,'omitnan'); %
end
new_time = t(x_index); % time values are computed at the center of the buffer
end
Alexander
el 15 de Feb. de 2024
A very easy approach (as allways):
%Algorythm for Average of excel data
%https://de.mathworks.com/matlabcentral/answers/2082483-algorythm-for-average-of-excel-data
clear; close all;
data = dlmread('S1IA.csv',',',1,0);
t = data(:,1);A = data(:,2);B = data(:,3);
dy = floor(length(A)/5)
t = t(1:dy*5); % maximum 4 samples lost!
tr = reshape(t,5,dy);
trMean = mean(tr);
A = A(1:dy*5); % maximum 4 samples lost!
Ar = reshape(A,5,dy);
ArMean = mean(Ar);
B = B(1:dy*5); % maximum 4 samples lost!
Br = reshape(B,5,dy);
BrMean = mean(Br);
subplot(211)
plot(trMean ,ArMean); grid minor; title('A')
subplot(212)
plot(trMean, BrMean); grid minor; title('B')
@SATYA PAL beautifying is up to you.
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!