The custom loss function, which is trained with the dlarray structure, reports an error when using sgdmupdate to update, and cannot be assigned, because this type of variable
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
% 定义 LSTM 网络结构
numFeatures = size(X_train, 2); % 特征数量,这里是 3
numHiddenUnits = 100; % LSTM 隐藏单元数量
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numFeatures)
];
maxEpochs = 50;
miniBatchSize = 3;
learningRate = 0.01;
% 初始化 LSTM 模型
net = dlnetwork(layers); % 在 CPU 上训练
% 训练循环
numObservations = size(X_train, 1);
numMiniBatches = floor(numObservations / miniBatchSize);
averageGrad = [];
averageSqGrad = [];
iteration = 0;
Velocities = zeros(size(net));
momentum = 0.9;
for epoch = 1:maxEpochs
% 打乱训练数据
idx = randperm(numObservations);
X_train_shuffled = X_train(idx, :);
Y_train_shuffled = Y_train(idx, :);
totalLoss = 0;
for i = 1:numMiniBatches
idxBatch = (i - 1) * miniBatchSize + 1 : i * miniBatchSize;
X_batch = X_train_shuffled(idxBatch, :);
Y_batch = Y_train_shuffled(idxBatch, :);
iteration = iteration + 1;
% 前向传播计算预测
Y_pred = predict(net, X_batch');
Y_pred = Y_pred';
Y_pred = dlarray(Y_pred, 'TS');
Y_batch = dlarray(Y_batch, 'TS');
%loss = mean(( Y_batch - Y_pred).^2, 'all');
[loss_1, gradients] = dlfeval(@customLoss, Y_batch, Y_pred);
gradients = extractdata(gradients);
[net, Velocities] = sgdmupdate(net, gradients, Velocities,learningRate,momentum);
% 计算损失
% loss = customLoss(Y_batch, Y_pred);
% totalLoss = totalLoss + loss;
% 反向传播更新梯度
%dL_dY = 2 * (Y_pred - Y_batch) / miniBatchSize;
%gradients = dlgradient(loss, net.LearnableParameters);
%net = updateParameters(net, gradients, learningRate);
end
% 显示每个 epoch 的平均损失
avgLoss = totalLoss / numMiniBatches;
fprintf('Epoch %d, Average Loss: %.4f\n', epoch, avgLoss);
end
无法执行赋值,因为此类型的变量不支持使用点进行索引。
protoTable.Value = zeros(height(protoTable),0);
outputs = iProcessNetwork_Nout_Nin(fun, paramFun, numOut, ...
outputs = iDispatch_Nout_Nin(allowNetInput, fun, paramFun, numOut, ...
varargout = deep.internal.recording.containerfeval(...
[p, vel] = deep.internal.networkContainerFixedArgsFun(func, ...
0 comentarios
Respuestas (1)
praguna manvi
el 18 de Jul. de 2024
Editada: praguna manvi
el 18 de Jul. de 2024
Hi,
According to the documentation on “dlfeval” :
You can use a “dlnetwork” object as a function argument to evaluate gradients for deep learning. To do this, you should perform the network's forward pass within the "fun" function handle.
To implement the custom loss in the above network, refer to the function “modelGradients” from the corrected code below. Compute “gradients = dlgradient(loss, net.Learnables);” and then use “sgdmupdate(net, ...)” to update the network.
numObservations = 100;
numFeatures = 3;
numResponses = 3;
sequenceLength = 1;
X_train = rand(numFeatures, sequenceLength, numObservations);
Y_train = rand(numResponses, sequenceLength, numObservations);
numHiddenUnits = 100;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(numResponses)
];
maxEpochs = 50;
miniBatchSize = 3;
learningRate = 0.01;
net = dlnetwork(layers);
numMiniBatches = floor(numObservations / miniBatchSize);
averageGrad = [];
averageSqGrad = [];
iteration = 0;
Velocities = [];
momentum = 0.9;
for epoch = 1:maxEpochs
idx = randperm(numObservations);
X_train_shuffled = X_train(:, :, idx);
Y_train_shuffled = Y_train(:, :, idx);
totalLoss = 0;
for i = 1:numMiniBatches
idxBatch = (i - 1) * miniBatchSize + 1 : i * miniBatchSize;
X_batch = X_train_shuffled(:, :, idxBatch);
Y_batch = Y_train_shuffled(:, :, idxBatch);
iteration = iteration + 1;
dlX_batch = dlarray(X_batch, 'CBT');
dlY_batch = dlarray(Y_batch, 'CBT');
[loss, gradients] = dlfeval(@modelGradients, net, dlX_batch, dlY_batch);
[net, Velocities] = sgdmupdate(net, gradients, Velocities, learningRate, momentum);
totalLoss = totalLoss + loss;
end
avgLoss = totalLoss / numMiniBatches;
fprintf('Epoch %d, Average Loss: %.4f\n', epoch, avgLoss);
end
function [loss, gradients] = modelGradients(net, dlX, dlY)
dlYPred = forward(net, dlX);
loss = mean((dlYPred - dlY).^2, 'all');
gradients = dlgradient(loss, net.Learnables);
end
Additionally, please refer to this example on how to train a network using custom loss :
0 comentarios
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!