Borrar filtros
Borrar filtros

Work Around for Convolution1DLayer

13 visualizaciones (últimos 30 días)
Kevin Monahan
Kevin Monahan el 7 de Ag. de 2024
Comentada: el 17 de Ag. de 2024 a las 12:15
I am trying to do code generation of a trained deep learning network however it uses a convolution1dlayer. It seems this is not currently supported by matlab. What are some possible solutions to this problem?

Respuestas (4)

Aditya
Aditya el 7 de Ag. de 2024
Editada: Aditya el 7 de Ag. de 2024
Hi Kevin,
Please do refer to this MATLAB answer post by MathWorks Support Team on the same issue: Is code generation supported for "convolution1DLayer"? - MATLAB Answers - MATLAB Central (mathworks.com)
Hope this helps!

Ram Kokku
Ram Kokku el 7 de Ag. de 2024
Editada: Walter Roberson el 7 de Ag. de 2024
Convolution1DLayer supports code generation in the latest (R2024a) version of MATLAB. See the extended capabilities section : here - https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.convolution1dlayer.html

Steven Lord
Steven Lord el 7 de Ag. de 2024
Are you certain that you're using release R2024a? It appears from the Release Notes that support for generating code from this layer was added in release R2024a.
  3 comentarios
Ram Kokku
Ram Kokku el 8 de Ag. de 2024
@Kevin Monahan, use TargetLibrary=none (https://www.mathworks.com/help/coder/ref/coder.deeplearningconfig.html). Both MATLAB Coder and GPU Coder support TargetLibrary=none. so, you should be able to generate both C/C++ and CUDA. For Better performance, you may need to explicit enable hardware features like instructionset (AVX2, AVX512) and multi-threading. See https://www.mathworks.com/help/coder/ug/optimize-generic-c-cpp-code-performance.html for more details.
森
el 17 de Ag. de 2024 a las 12:15
I meet the same problem when generating coder containg Convolution1DLayer using TargetLibrary=none, and I also use the version 2024a. So this means actualy version 2024a stiil does not support the code generation for Convolution1DLayer?

Iniciar sesión para comentar.


Matt J
Matt J el 7 de Ag. de 2024
Editada: Matt J el 7 de Ag. de 2024
Why not just use a convolution2dLayer? A 1D input is just a special case of a 2D input.
  2 comentarios
Kevin Monahan
Kevin Monahan el 7 de Ag. de 2024
I did not make the model. It was given to me pretrained. I need to take it and move it out of Matlab for future research.
Matt J
Matt J el 7 de Ag. de 2024
Editada: Matt J el 7 de Ag. de 2024
Why does that matter? It was given to you, but surely you can use replaceLayer to swap the 1D convolutional layers for 2D ones.

Iniciar sesión para comentar.

Categorías

Más información sobre Deep Learning with GPU Coder en Help Center y File Exchange.

Productos


Versión

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by