How can I fit data to a piecewise function, where the breakpoint of the function is also a parameter to be optimised?
95 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rahul
el 29 de Sept. de 2025 a las 20:45
Comentada: Image Analyst
el 3 de Oct. de 2025 a las 14:58
I have data with x and y values. This data should conform to a function: an assymmetric parabola. Here, the parameters that define the shape of the parabola should be different on either side of the maximum point of the parabola i.e. the breakpoint is where the maximum value of y occurs.
I was hoping to use 'fit' and to define an anonymous function for my data. But I'm not able to work out how to define an anonymous, piecewise function, especially where the breakpoint is one of the parameters to be determined by the fitting procedure, as it is not immediately clear from the data itself where the maximum value of y should occur.
Any help would be appreciated.
0 comentarios
Respuesta aceptada
Matt J
el 30 de Sept. de 2025 a las 4:09
Editada: Matt J
el 30 de Sept. de 2025 a las 11:20
Once you've chosen the coefficients of the first parabola [a1,b1,c1], the breakpoint is determined from,
d=-b1/(2*a1)
Only the leading coefficient of the second parabola is a free parameter:
F=@(x) asymParabola(-2,1,0,-0.6,x);
fplot(F,[-10,10]);axis padded %example plot
ft = fittype(@(a1,b1,c1,a2, x) asymParabola(a1,b1,c1,a2, x) )
function y=asymParabola(a1,b1,c1,a2, x)
d=-b1/(2*a1);
b2=-d*2*a2;
c2=polyval([a1,b1,c1],d)-polyval([a2,b2,0],d);
left=(x<=d);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(~left)=polyval([a2,b2,c2],x(~left));
end
6 comentarios
Image Analyst
el 3 de Oct. de 2025 a las 14:58
@Rahul what would have been best is if you had shown a screenshot of your noisy data plotted, and attached the data so that people would have something to work with.
I think the fit values will change because of noise. With one set of noise, you'd have one set of parabola coefficients but if you had a different set of noise, then you have a different set of coefficients. If there is no noise, there is no need for a fit because you have the analytical formula already.
If you have any more questions, then attach your data and code to read it in with the paperclip icon after you read this:
Más respuestas (3)
Walter Roberson
el 29 de Sept. de 2025 a las 21:20
(a1*x.^2 + b1*x + c1) .* (x <= d) + (a2*x.^2 + b2*x + c2) .* (x > d)
Note that for this to work, the coefficients must be constrained to be finite
2 comentarios
Paul
el 30 de Sept. de 2025 a las 0:37
Sounds like both sides of the function should have the same value at x = d, at least that's how interpret the question. If so, then I think the function would look something like
(a1*(x-d).^2 + b1*(x-d) + c) .* (x <= d) + (a2*(x-d).^2 + b2*(x-d) + c) .* (x > d)
Catalytic
el 30 de Sept. de 2025 a las 14:13
Editada: Catalytic
el 30 de Sept. de 2025 a las 14:18
You can also parametrize the model function directly in terms of the break point coordinates (xbreak, ybreak) and two curvature parameters -
F= @(a1,a2,xbreak,ybreak, x) modelFun(a1,a2,xbreak,ybreak, x);
xbreak=3; ybreak=5;
fplot( @(x) F(-2,-0.6,xbreak,ybreak,x), [1,5]);
xline(xbreak,'--')
fType = fittype(F);
function y=modelFun(a1,a2,xbreak,ybreak, x)
X=x-xbreak;
LHS=(X<=0);
RHS=~LHS;
y=X.^2;
y(LHS)=a1.*y(LHS) + ybreak;
y(RHS)=a2.*y(RHS) + ybreak;
end
Matt J
el 30 de Sept. de 2025 a las 21:15
Editada: Matt J
el 3 de Oct. de 2025 a las 13:47
Why ? Both parabola can intersect below their respective maxima, and nonetheless the point of intersection can be the maximum y-value of the piecewise function.
F=@(x) asymParabola(-2,1,0,-6,5,-20 ,x);
fplot(F,[-10,-1]);axis padded %example plot
function y=asymParabola(a1,b1,c1, a2, s, rightSlope, x)
%Requirements: a1<0, a2<0, s>=0, rightSlope<=0
d=-b1/(2*a1)-s;
c2=polyval([a1,b1,c1],d);
left=(x<=d);
right=~left;
xright=x(right);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(right)=a2*(xright-d).^2 + rightSlope*(xright-d) +c2;
end
0 comentarios
Ver también
Categorías
Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


