How can I fit data to a piecewise function, where the breakpoint of the function is also a parameter to be optimised?

51 visualizaciones (últimos 30 días)
I have data with x and y values. This data should conform to a function: an assymmetric parabola. Here, the parameters that define the shape of the parabola should be different on either side of the maximum point of the parabola i.e. the breakpoint is where the maximum value of y occurs.
I was hoping to use 'fit' and to define an anonymous function for my data. But I'm not able to work out how to define an anonymous, piecewise function, especially where the breakpoint is one of the parameters to be determined by the fitting procedure, as it is not immediately clear from the data itself where the maximum value of y should occur.
Any help would be appreciated.

Respuesta aceptada

Matt J
Matt J hace alrededor de 16 horas
Editada: Matt J hace alrededor de 9 horas
Once you've chosen the coefficients of the first parabola [a1,b1,c1], the breakpoint is determined from,
d=-b1/(2*a1)
Only the leading coefficient of the second parabola is a free parameter:
F=@(x) asymParabola(-2,1,0,-0.6,x);
fplot(F,[-10,10]);axis padded %example plot
ft = fittype(@(a1,b1,c1,a2, x) asymParabola(a1,b1,c1,a2, x) )
ft =
General model: ft(a1,b1,c1,a2,x) = asymParabola(a1,b1,c1,a2,x)
function y=asymParabola(a1,b1,c1,a2, x)
d=-b1/(2*a1);
b2=-d*2*a2;
c2=polyval([a1,b1,c1],d)-polyval([a2,b2,0],d);
left=(x<=d);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(~left)=polyval([a2,b2,c2],x(~left));
end
  4 comentarios
Rahul
Rahul hace 29 minutos
Thanks a lot Matt, I think this is right; I think there should only be 4 free parameters to be constrained overall. This simplifies things greatly.
Torsten
Torsten hace 3 minutos
Editada: Torsten hace 2 minutos
If the given x,y values have no noise/errors, then the maximum y-value and the maximum of the parabola are one and the same.
Why ? Both parabola can intersect below their respective maxima, and nonetheless the point of intersection can be the maximum y-value of the piecewise function.
But it seems you interpreted the question correctly.

Iniciar sesión para comentar.

Más respuestas (2)

Walter Roberson
Walter Roberson hace alrededor de 23 horas
(a1*x.^2 + b1*x + c1) .* (x <= d) + (a2*x.^2 + b2*x + c2) .* (x > d)
Note that for this to work, the coefficients must be constrained to be finite
  2 comentarios
Paul
Paul hace alrededor de 1 hora
Sounds like both sides of the function should have the same value at x = d, at least that's how interpret the question. If so, then I think the function would look something like
(a1*(x-d).^2 + b1*(x-d) + c) .* (x <= d) + (a2*(x-d).^2 + b2*(x-d) + c) .* (x > d)
Rahul
Rahul hace alrededor de 6 horas
Thanks Paul, I think this would also work, but as Matt pointed out I think some of extra parameters are not needed (as they are actually constrained by the others). I am not sure how Matlab deals with this in the curve fitting/optimisation algorithms.

Iniciar sesión para comentar.


Catalytic
Catalytic hace alrededor de 6 horas
Editada: Catalytic hace alrededor de 6 horas
You can also parametrize the model function directly in terms of the break point coordinates (xbreak, ybreak) and two curvature parameters -
F= @(a1,a2,xbreak,ybreak, x) modelFun(a1,a2,xbreak,ybreak, x);
xbreak=3; ybreak=5;
fplot( @(x) F(-2,-0.6,xbreak,ybreak,x), [1,5]);
xline(xbreak,'--')
fType = fittype(F);
function y=modelFun(a1,a2,xbreak,ybreak, x)
X=x-xbreak;
LHS=(X<=0);
RHS=~LHS;
y=X.^2;
y(LHS)=a1.*y(LHS) + ybreak;
y(RHS)=a2.*y(RHS) + ybreak;
end

Categorías

Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by