Gerchberg–Saxton algorithm
22 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
maria
el 27 de Sept. de 2015
Comentada: Isaac Oguntoye
el 31 de Mayo de 2018
Hello! I have the following code:
for k=1:1:20;
G_pr=absP.*exp(i.*theta);
g_pr=ifft2(ifftshift(G_pr));
absPhase=abs(angle(g_pr));
maxPh=max(max(absPhase));
minPh=min(min(absPhase));
g_pr(absPhase>=(minPh+0.2*(maxPh-minPh)))=0;
g_pr=real(g_pr);
gg=255*g_pr/(max(max(g_pr)));
figure(1),imshow(uint8(gg)); title(num2str(k))
G=fftshift(fft2(g_pr));
G=G./abs(G);
theta=angle(G);
end
The first theta is the phase of my model image (angle(model)) However, this code diverges instead of converge, Does someone knows why?
Thank you
2 comentarios
Image Analyst
el 27 de Sept. de 2015
You haven't given us enough code to even run your snippet that you posted here. Can't you step through it with the debugger to find out why?
Respuesta aceptada
PNZ BDCB
el 25 de Oct. de 2017
I'm not sure where in your code is the error. The following code works perfectly for me (adopted from wikipedia):
A = fftshift(ifft2(fftshift(Target)));
for i=1:25
B = abs(Source) .* exp(1i*angle(A));
C = fftshift(fft2(fftshift(B)));
D = abs(Target) .* exp(1i*angle(C));
A = fftshift(ifft2(fftshift(D)));
imagesc(abs(C)) %Present current pattern
title(sprintf('%d',i));
pause(0.5)
end
Before running the code, make sure 'Source' contains your input beam, for example:
Source = exp(-1/2*(xx0.^2+yy0.^2)/sigma^2);
And 'Target' contains your requested pattern.
The phase mask can be presented at the end of the for loop:
imagesc(angle(A))
1 comentario
Isaac Oguntoye
el 31 de Mayo de 2018
Thanks for the response. Did you consider using your code for a simple image like a dot? Thanks.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!